Abstract

Centrifugal compressors are versatile machines that many industries employ for a wide range of different applications, including the production of highly compressed gases. During the last decades, comprehensive research was conducted on the impact of high-pressure operating conditions on the vibrational behavior of radial compressors. In various studies, acoustic modes building up in the side cavities were found to be a potential source of high cycle fatigue. Nowadays, it is well-known that an increase in gas pressure levels leads to a more pronounced fluid–structure interaction between the side cavities and the impeller resulting in a frequency shift of the acoustic and structural modes. In a recently published paper, the authors presented a generalized model which can predict this behavior. As it is not always possible to avoid operating close to or accelerating through a resonance, it is crucial to know the damping present within the system. Currently, only few publications concentrate on the damping of radial impellers. Therefore, the authors present measurement data acquired from a test rig at the University of Duisburg-Essen, which reveals the damping behavior of a disk under varying operating conditions. Two surrogate models are proposed to predict the identified damping behavior. The first one is based solely on a one-dimensional piston model and the second approach uses an enhanced version of the generalized method. Finally, the measurement data are used to validate both surrogate systems.

References

1.
Folga
,
S. M.
,
2007
, “
Natural Gas Pipeline Technology Overview
,” Argonne National Laboratory, Argonne, IL, Report No. ANL/EVS/TM/08-5.
2.
Brun
,
K.
, and
Kurz
,
R.
,
2019
,
Compression Machinery for Oil and Gas
,
Gulf Professional Publishing
,
Cambridge, MA
.
3.
Eckert
,
L.
,
1999
, “
High Cycle Fatigue Cracks at Radial Fan Impellers Cause by Aeroelastic Self-Excited Impeller Vibrations, Part 1: Case History, Root Cause Analysis, Vibration Measurements
,”
ASME
Paper No. DETC99/VIB-8261.10.1115/DETC99/VIB-8261
4.
Eisinger
,
F.
,
2002
, “
Acoustic Fatigue of Impellers of Rotating Machinery
,”
ASME J. Pressure Vessel Technol.
,
124
(
2
), pp.
154
160
.10.1115/1.1462622
5.
König
,
S.
,
Petry
,
N.
, and
Wagner
,
N.
,
2009
, “
Aeroacoustic Phenomena in High-Pressure Centrifugal Compressors—A Possible Root Cause for Impeller Failures
,”
Proceedings of the Texas A&M 38th Turbomachinery Symposium
, Houston, TX, Sept. 14–17, pp.
103
121
.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163083/ch10_Konig.pdf?sequence=1&isAllowed=y
6.
Ni
,
A.
,
1999
, “
High Cycle Fatigue Cracks at Radial Fan Impellers Cause by Aeroelastic Self- Excited Impeller Virbations, Part 2: Mechanisms and Mathematical Model
,”
ASME
Paper No. DETC99/VIB-8262.10.1115/DETC99/VIB-8262
7.
Dowell
,
E. H.
,
Gorman
,
G. F.
, and
Smith
,
D. A.
,
1977
, “
Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparisons With Experiment
,”
J. Sound Vib.
,
52
(
4
), pp.
519
542
.10.1016/0022-460X(77)90368-6
8.
Parker
,
A.
,
1967
, “
Resonance Effects in Wake Shedding From Compressor Blading
,”
J. Sound Vib.
,
6
(
3
), pp.
302
309
.10.1016/0022-460X(67)90202-7
9.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.10.4271/620532
10.
König
,
S.
, and
Petry
,
N.
,
2012
, “
Parker-Type Acoustic Resonances in the Return Guide Vane Cascade of a Centrifugal Compressor - Theoretical Modeling and Experimental Verification
,”
ASME J. Turbomach.
,
134
(
6
), p.
061029
.10.1115/1.4006316
11.
Richards
,
S. K.
,
Ramakrishnan
,
K.
,
Shieh
,
C.
,
Moyroud
,
F.
,
Picavet
,
A.
,
Ballarini
,
V.
, and
Michelassi
,
V.
,
2012
, “
Unsteady Acoustic Forcing on an Impeller Due to Coupled Blade Row Interactions
,”
ASME J. Turbomach.
,
134
(
3
), p.
061014
.10.1115/1.4006284
12.
Ziada
,
S.
,
Oengören
,
A.
, and
Vogel
,
A.
,
2002
, “
Acoustic Resonance in the Inlet Scroll of a Turbo- Compressor
,”
J. Fluid Struct.
,
16
(
3
), pp.
361
373
.10.1006/jfls.2001.0421
13.
Magara
,
Y.
,
Narita
,
M.
,
Yamaguchi
,
K.
,
Takahashi
,
N.
, and
Kuwano
,
T.
,
2008
, “
Natural Frequencies of Centrifugal Compressor Impellers for High Density Gas Applications
,”
ASME
Paper No. IMECE2008-67278.10.1115/IMECE2008-67278
14.
Magara
,
Y.
,
Yamaguchi
,
K.
,
Miura
,
H.
,
Takahashi
,
N.
, and
Narita
,
M.
,
2013
, “
Natural Frequency Shift in a Centrifugal Compressor Impeller for High-Density Gas Applications
,”
ASME J. Turbomach.
,
135
(
1
), p.
011014
.10.1115/1.4006423
15.
Heinrich
,
C. R.
,
Kühhorn
,
A.
,
Steff
,
K.
, and
Petry
,
N.
,
2020
, “
Generalized Model for the Approximation of Coupled Acousto-Mechanical Natural Frequencies in High-Pressure Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071022
.10.1115/1.4049447
16.
Whitehead
,
D. S.
,
1962
, “Bending Flutter of Unstalled Cascade Blades at Finite Deflection,” Aeronautical Research Council, London, UK, Reports and Memoranda 3386.
17.
Crawley
,
E. F.
,
1983
, “
Aerodynamic Damping Measurements in a Transonic Compressor
,”
J. Eng. Power
,
105
(
3
), pp.
575
584
.10.1115/1.3227456
18.
Newman
,
F. A.
,
1988
, “Experimental Determination of Aerodynamic Damping in a Three-Stage Transonic Axial-Flow Compressor,” NASA, Cleveland, OH, Technical Memorandum 100953.
19.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2009
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part II: Blade Damping
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022509
.10.1115/1.2968870
20.
Gibert
,
C.
,
Blanc
,
L.
,
Almeida
,
P.
,
Leblanc
,
X.
,
Ousty
,
J.-P.
,
Thouverez
,
F.
, and
Laîné
,
J.-P.
,
2012
, “
Modal Tests and Analysis of a Radial Impeller at Rest: Influence of Surrounding Air on Damping
,”
ASME
Paper No. GT2012-69577.10.1115/GT2012-69577
21.
Beirow
,
B.
,
Maywald
,
T.
,
Figaschewsky
,
F.
,
Heinrich
,
C. R.
,
Kühhorn
,
A.
, and
Giersch
,
T.
,
2016
, “
Simplified Determination of Aerodynamic Damping for Bladed Rotors. Part 1: Experimental Validation at Rest
,”
ASME
Paper No. GT2016-56535.10.1115/GT2016-56535
22.
Barabas
,
B.
,
Brillert
,
D.
,
Dohmen
,
H.
, and
Benra
,
F.
,
2017
, “
Identification of Coupled Natural Frequencies in a Rotor-Stator Test-Rig for Different Gas Properties
,”
Proceedings of the 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Stockholm, Sweden, Apr. 3–7, Paper No. ETC2017-057.https://www.euroturbo.eu/paper/ETC2017-057.pdf
23.
Barabas
,
B.
,
Benra
,
F.
,
Petry
,
N.
, and
Brillert
,
D.
,
2021
, “
Experimental Damping Behavior of Strongly Coupled Structure and Acoustic Modes of a Rotating Disk With Side Cavities
,”
ASME
Paper No. GT2021-58782.10.1115/GT2021-58782
24.
Beatty
,
M. F.
,
2006
,
Principles of Engineering Mechanics. Dynamics— The Analysis of Motion
,
Springer
,
New York
.
25.
Ewins
,
D. J.
,
2000
,
Modal Testing. Theory, Practice and Application
,
Research Studies Press
,
Baldock, UK
.
26.
Desmet
,
W.
, and
Vandepitte
,
D.
,
2002
, “
Finite Element Modeling for Acoustics
,”
ISAAC13—International Seminar on Applied Acoustics
, Leuven, Belgium, Sept. 16–18, pp.
37
85
.
27.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method. The Basis
,
Butterworth- Heinemann
,
Oxford, UK
.
28.
Struthers
,
A.
, and
Potter
,
M.
,
2019
, “
Differential Equations
,”
For Scientists and Engineers
,
Springer Nature
,
Cham, Switzerland
.
29.
Watkins
,
D. S.
,
2007
,
The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
30.
Wauer
,
J.
,
2014
,
Kontinuumsschwingungen. Vom Einfachen Strukturmodell Zum Komplexen Mehrfeldsystem
,
Springer Vieweg
,
Wiesbaden, Germany
.
31.
Kinsler
,
L.
,
Frey
,
A.
,
Coppens
,
A.
, and
Sanders
,
J.
,
2000
,
Fundamentals of Acoustics
,
Wiley
,
New York
.
32.
Moré
,
J. J.
, and
Sorensen
,
D. C.
,
1983
, “
Computing a Trust Region Step
,”
SIAM J. Sci. Stat. Comput.
,
4
(
3
), pp.
553
572
.10.1137/0904038
You do not currently have access to this content.