Abstract

Blades are a critical part of steam turbines. Since they usually work under extremely harsh conditions, it is necessary to detect cracks that are generated during operation in time and prevent them from developing into larger ones. Crack detection is crucial to maintaining the structural health and operational safety of steam turbines. Today, one of the most common detection methods is to perform magnetic particle flaw detection manually, but it is subject to the subjective judgment of inspectors, with a low level of automation. This paper presents an automated crack detection device, which can perform magnetic particle inspection on the blades and transfer images to a host computer for further image analysis. After comparing the performance of different object detection models, yolov4 (you only look once—version 4), which is a fast and accurate real-time object detection algorithm, is chosen in this paper to extract subimages containing cracks on the host computer. Furthermore, an intelligent crack detection model is established from image processing techniques, which can be divided into four steps: image preprocessing, edge detection, crack extraction and crack length calculation. In the step of image preprocessing, a new image pyramid method is proposed to blur the background and eliminate the texture of the metal surface while keeping the cracks' information to the utmost extent. An experimental study shows a reliable performance of the proposed crack detection model.

References

1.
BP p.l.c., 2021, “Statistical Review of World Energy 2021,” London, UK, accessed July 6, 2021, https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
2.
Jonas
,
O.
, and
Machemer
,
L.
,
2008
,
“Steam Turbine Corrosion and Deposits Problems and Solutions,”
Proceedings of 37th Turbomachinery Symposium
, Houston, TX, Aug. 1, pp.
211
228
.10.21423/R1P05C
3.
Ziegler
,
D.
,
Puccinelli
,
M.
,
Bergallo
,
B.
, and
Picasso
,
A.
,
2013
, “
Investigation of Turbine Blade Failure in a Thermal Power Plant
,”
Eng. Fail. Anal.
,
1
(
3
), pp.
192
199
.10.1016/j.csefa.2013.07.002
4.
Sperry
,
R. E.
,
Toney
,
S.
, and
Shade
,
D. J.
,
1977
, “
Some Adverse Effects of Stress Corrosion in Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
99
(
2
), pp.
255
260
.10.1115/1.3446282
5.
Ihn
,
J. B.
, and
Chang
,
F. K.
,
2004
, “
Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-In Piezoelectectric Sensor/Actuator Network: I. Diagnostics
,”
SMS
,
13
(
3
), pp.
609
620
.10.1088/0964-1726/13/3/020
6.
AbdAlla
,
A. N.
,
Faraj
,
M. A.
,
Samsuri
,
F.
,
Rifai
,
D.
,
Ali
,
K.
, and
Al-Douri
,
Y.
,
2019
, “
Challenges in Improving the Performance of Eddy Current Testing: Review
,”
Meas. Control-Uk
,
52
(
1–2
), pp.
46
64
.10.1177/0020294018801382
7.
Mohan
,
A.
, and
Poobal
,
S.
,
2018
, “
Crack Detection Using Image Processing: A Critical Review and Analysis
,”
Alex. Eng. J.
,
57
(
2
), pp.
787
798
.10.1016/j.aej.2017.01.020
8.
Yang
,
R. Z.
,
He
,
Y. Z.
,
Mandelis
,
A.
,
Wang
,
N. C.
,
Wu
,
X.
, and
Huang
,
S. D.
,
2018
, “
Induction Infrared Thermography and Thermal-Wave-Radar Analysis for Imaging Inspection and Diagnosis of Blade Composites
,”
IEEE Trans. Ind. Inform.
,
14
(
12
), pp.
5637
5647
.10.1109/TII.2018.2834462
9.
Jing
,
Y. H.
,
Yang
,
F. B.
,
Li
,
D. Q.
,
Li
,
H.
,
Zhang
,
L.
,
Li
,
D.
, and
Zhu
,
Q.
,
2007
, “
X-Ray Inspection of MIM 418 Superalloy Turbine Wheels and Defects Analysis
,”
Rare Met. Mat. Eng.
,
42
(
2
), pp.
317
321
.10.1016/S1875-5372(17)30087-5
10.
He
,
H.
,
Zheng
,
Z. B.
,
Yang
,
Z. J.
,
Wang
,
X. C.
, and
Wu
,
Y. X.
,
2020
, “
Failure Analysis of Steam Turbine Blade Roots
,”
Eng. Fail. Anal.
,
115
(
3
), pp.
1873
1961
.10.1016/j.engfailanal.2020.104629
11.
Kumar
,
M.
,
Heinig
,
R.
,
Cottrell
,
M.
,
Siewert
,
C.
,
Almstedt
,
H.
,
Feiner
,
D.
, and
Griffin
,
J.
,
2022
, “
Detection of Cracks in Turbomachinery Blades by Online Monitoring
,”
ASME
Paper No. GT2020-14813.10.1115/GT2020-14813
12.
Zhang
,
Z.
,
Liu
,
T.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2021
, “
Water Droplet Erosion Life Prediction Method for Steam Turbine Blade Materials Based on Image Recognition and Machine Learning
,”
ASME J. Eng. Gas Turbine Power
,
143
(
3
), p.
031009
.10.1115/1.4049768
13.
Zhang
,
J.
,
Yang
,
X.
,
Wang
,
H.
,
Bu
,
Y.
, and
Liang
,
F.
,
2013
, “
Research of Intelligent Image Recognition Technology in Fluorescent Magnetic Particle Flaw Detection
,”
J. Mater. Sci. Technol.
,
29
(
1
), pp.
82
84
.10.1016/j.jmst.2012.12.012
14.
Mohtasham Khani
,
M.
,
Vahidnia
,
S.
,
Ghasemzadeh
,
L.
,
Ozturk
,
Y. E.
,
Yuvalaklioglu
,
M.
,
Akin
,
S.
, and
Ure
,
N. K.
,
2020
, “
Deep-Learning-Based Crack Detection With Applications for the Structural Health Monitoring of Gas Turbines
,”
Struct. Health Monit.
,
19
(
5
), pp.
1440
–14
13
.10.1177/1475921719883202
15.
Aust
,
J.
,
Shankland
,
S.
,
Pons
,
D.
,
Mukundan
,
R.
, and
Mitrovic
,
A.
,
2021
, “
Automated Defect Detection and Decision-Support in Gas Turbine Blade Inspection
,”
Aerospace
,
8
(
2
), p.
30
.10.3390/aerospace8020030
16.
Bochkovskiy
,
A.
,
Wang
,
C.
, and
Liao
,
H. M.
,
2020
, “
YOLOv4: Optimal Speed and Accuracy of Object Detection
,” e-print
arXiv:2004.10934
.10.48550/arXiv.2004.10934
17.
He
,
K.
,
Sun
,
J.
, and
Tang
,
X.
,
2013
, “
Guided Image Filtering
,”
IEEE Trans. Pattern Anal.
,
35
(
6
), pp.
1397
1409
.10.1109/TPAMI.2012.213
18.
Anderson
,
C. H.
,
Bergen
,
J. R.
,
Burt
,
P. J.
, and
Ogden
,
J. M.
,
1984
, “
Pyramid Methods in Image Processing
,”
RCA Eng.
,
29
(
6
), pp.
33
41
.https://wxs.ca/research/multiscale-neural-synthesis/RCA%20Eng.%201984%20Adelson.pdf
19.
Lai
,
W. S.
,
Huang
,
J. B.
,
Ahuja
,
N.
, and
Yang
,
M. H.
,
2017
,
“Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Honolulu, HI, July 21–26, pp.
624
632
.10.1109/CVPR.2017.618
20.
Zuiderveld
,
K.
,
1994
,
Contrast Limited Adaptive Histogram Equalization
,
Graphics Gems IV, Academic Press Professional
, Association for Computing Machinery, New York, pp.
474
485
.
You do not currently have access to this content.