Abstract

This study focuses on the effect of multiple heat release mode interactions on the amplitude of unsteady pressure oscillation for a partially premixed radial swirl burner, which uses methane as fuel. A range of operating conditions based on inlet airflow rate and global equivalence ratio is considered for this purpose. The pressure time series shows amplitude modulation at the dominant frequency for all the flow rates and equivalence ratios considered. Wavelet analysis based on continuous wavelet transform illustrates the presence of heat release rate fluctuations at multiple frequencies other than the dominant mode of pressure oscillation, with this more pronounced at low frequencies. Spectral proper orthogonal decomposition performed on time-resolved CH* chemiluminescence images reveal four dominant spatial modes of chemiluminescence, chosen based on the dominant wavelet coefficients for the same. The identified frequencies correspond to the duct-acoustic mode, helical mode (spectrally close to acoustic mode), low-frequency axisymmetric mode and low-frequency helical mode. The low-frequency helical mode (considered as the result of nonlinear interaction between acoustic and helical mode) and the low-frequency axisymmetric mode (considered to have independent existence) have similar spectral content. Amplitude modulation of unsteady pressure is found to be a result of the superposition of duct-acoustic mode and low-frequency axisymmetric mode, whereas reduction in overall pressure amplitude with the decrease in global equivalence ratio is seen to be a result of an increase in the dominance of low-frequency helical mode. The relative dominance of low-frequency helical mode over dominant pressure mode reduces the overall pressure amplitude.

References

1.
Lefebvre
,
A.
H., and Ballal, D. R.,
2010
,
Gas Turbine Combustion: Alternate Fuels and Emissions
, 3rd
ed., CRC Press
, Boca Raton, FL.10.1201/9781420086058
2.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Danvers, MA.10.2514/5.9781600866807.0003.0026
3.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
4.
Lilley
,
D. G.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.10.2514/3.60756
5.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
6.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
7.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
8.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
9.
Hemchandra
,
S.
,
2012
, “
Premixed Flame Response to Equivalence Ratio Fluctuations: Comparison Between Reduced Order Modeling and Detailed Computations
,”
Combust. Flame
,
159
(
12
), pp.
3530
3543
.10.1016/j.combustflame.2012.08.003
10.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
11.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
12.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
,
Gicquel
,
L. Y. M.
, and
Candel
,
S.
,
2011
, “
Acoustically Perturbed Turbulent Premixed Swirling Flames
,”
Phys. Fluids
,
23
(
3
), p.
037101
.10.1063/1.3553276
13.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations
,”
Combust. Flame
,
157
(
9
), pp.
1731
1744
.10.1016/j.combustflame.2010.04.006
14.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Interference Mechanisms of Acoustic/Convective Disturbances in a Swirl-Stabilized Lean-Premixed Combustor
,”
Combust. Flame
,
160
(
8
), pp.
1441
1457
.10.1016/j.combustflame.2013.02.022
15.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Acoustic–Convective Mode Conversion in an Aerofoil Cascade
,”
J. Fluid Mech.
,
672
, pp.
545
569
.10.1017/S0022112010006142
16.
Anacleto
,
P. M.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.10.1080/00102200302354
17.
Moeck
,
J. P.
,
Bourgouin
,
J. F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
18.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
19.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
2000
, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
,
38
(
6
), pp.
1025
1034
.10.2514/2.1063
20.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow-Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.10.1016/j.combustflame.2010.07.011
21.
Karlis
,
E.
,
Liu
,
Y.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M. K. P.
,
2020
, “
Extinction Strain Rate Suppression of the Precessing Vortex Core in a Swirl Stabilised Combustor and Consequences for Thermoacoustic Oscillations
,”
Combust. Flame
,
211
, pp.
229
252
.10.1016/j.combustflame.2019.09.031
22.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.10.1016/j.combustflame.2016.06.013
23.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
24.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
25.
Noh
,
D.
,
Karlis
,
E.
,
Navarro-Martinez
,
S.
,
Hardalupas
,
Y.
,
Taylor
,
A. M.
,
Fredrich
,
D.
, and
Jones
,
W. P.
,
2019
, “
Azimuthally-Driven Subharmonic Thermoacoustic Instabilities in a Swirl-Stabilised Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5333
5341
.10.1016/j.proci.2018.07.090
26.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
27.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2017
, “
Advanced Identification of Coherent Structures in Swirl-Stabilized Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p. 021503.10.1115/1.4034261
28.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
29.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Flow Field Manipulation by Axial Air Injection to Achieve Flashback Resistance and Its Impact on Mixing Quality
,”
AIAA
Paper No. 2013-2603.10.2514/6.2013-2603
30.
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2017
, “
Interaction Mechanisms of Fuel Momentum With Flashback Limits in Lean-Premixed Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4518
4529
.10.1016/j.ijhydene.2016.11.018
31.
Kaiser
,
G.
,
1994
,
A Friendly Guide to Wavelets
,
Birkhauser Boston Inc
,
Boston, MA
.
32.
Farge
,
M.
,
1992
, “
Wavelet Transforms and Their Applications to Turbulence
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
395
457
.10.1146/annurev.fl.24.010192.002143
33.
Sen
,
A. K.
,
Litak
,
G.
,
Finney
,
C. E. A.
,
Daw
,
C. S.
, and
Wagner
,
R. M.
,
2010
, “
Analysis of Heat Release Dynamics in an Internal Combustion Engine Using Multifractals and Wavelets
,”
Appl. Energy
,
87
(
5
), pp.
1736
1743
.10.1016/j.apenergy.2009.11.009
34.
Choi
,
J.
,
Choi
,
O.
,
Lee
,
M. C.
, and
Kim
,
N.
,
2020
, “
On the Observation of the Transient Behavior of Gas Turbine Combustion Instability Using the Entropy Analysis of Dynamic Pressure
,”
Exp. Therm. Fluid Sci.
,
115
, p.
110099
.10.1016/j.expthermflusci.2020.110099
35.
Nakaya
,
S.
,
Omi
,
K.
,
Okamoto
,
T.
,
Ikeda
,
Y.
,
Zhao
,
C.
,
Tsue
,
M.
, and
Taguchi
,
H.
,
2021
, “
Instability and Mode Transition Analysis of a Hydrogen-Rich Combustion in a Model Afterburner
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5933
5942
.10.1016/j.proci.2020.05.003
36.
Sampath
,
R.
, and
Chakravarthy
,
S. R.
,
2016
, “
Investigation of Intermittent Oscillations in a Premixed Dump Combustor Using Time-Resolved Particle Image Velocimetry
,”
Combust. Flame
,
172
, pp.
309
325
.10.1016/j.combustflame.2016.06.018
37.
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2020
, “
Guide to Spectral Proper Orthogonal Decomposition
,”
AIAA J.
,
58
(
3
), pp.
1023
1033
.10.2514/1.J058809
38.
Nair
,
V.
, and
Sujith
,
R. I.
,
2015
, “
A Reduced-Order Model for the Onset of Combustion Instability: Physical Mechanisms for Intermittency and Precursors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3193
3200
.10.1016/j.proci.2014.07.007
39.
Oberleithner
,
K.
,
Paschereit
,
C. O.
, and
Wygnanski
,
I.
,
2014
, “
On the Impact of Swirl on the Growth of Coherent Structures
,”
J. Fluid Mech.
,
741
, pp.
156
199
.10.1017/jfm.2013.669
40.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.10.1016/j.combustflame.2004.08.003
41.
Baraiya
,
N. A.
,
Ramanan
,
V.
,
Baladandayuthapani
,
N.
,
Vegad
,
C. S.
, and
Chakravarthy
,
S. R.
,
2021
, “
Experimental Investigation Into the Role of Mean Flame Stabilization on the Combustion Dynamics of High-Hydrogen Fuels in a Turbulent Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), pp.
1
12
.10.1115/1.4050067
42.
Luciano
,
E.
, and
Ballester
,
J.
,
2018
, “
Analysis of the Dynamic Response of Premixed Flames Through Chemiluminescence Cross-Correlation Maps
,”
Combust. Flame
,
194
, pp.
296
308
.10.1016/j.combustflame.2018.05.005
43.
Guan
,
Y.
,
Gupta
,
V.
,
Wan
,
M.
, and
Li
,
L. K. B.
,
2019
, “
Forced Synchronization of Quasiperiodic Oscillations in a Thermoacoustic System
,”
J. Fluid Mech.
,
879
, pp.
390
421
.10.1017/jfm.2019.680
You do not currently have access to this content.