Abstract

Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapted based on output data. As no knowledge about the objective function is provided to the algorithms, this approach might reveal unconventional solutions to complex problems that were out of scope of classical solution strategies. In this study, the potential of these optimization methods on thermoacoustic problems is examined. The optimization algorithms are applied to a generic low-order thermoacoustic can-combustor model with several fuel injectors at different locations. We use three optimization algorithms – the well established downhill simplex method, the recently proposed explorative gradient method, and an evolutionary algorithm – to find optimal fuel distributions across the fuel lines while maintaining the amount of consumed fuel constant. The objective is to have minimal pulsation amplitudes. We compare the results and efficiency of the gradient-free algorithms. Additionally, we employ model-based linear stability analysis to calculate the growth rates of the dominant thermoacoustic modes. This allows us to highlight general and thermoacoustic-specific features of the optimization methods and results. The findings of this study show the potential of gradient-free optimization methods on combustor design for tackling thermoacoustic problems, and motivate further research in this direction.

References

1.
Lieuwen
,
T.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, New York.
2.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
3.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
822
829
.10.2514/2.6197
4.
Moeck
,
J. P.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2008
, “
Subcritical Thermoacoustic Instabilities in a Premixed Combustor
,”
AIAA
Paper No. 2008-2946.10.2514/6.2008-2946
5.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
6.
Polifke
,
W.
,
2010
, “
Low-Order Analysis Tools for Aero- and Thermo-Acoustic Instabilities
,”
Advances in Aero-Acoustics and Thermo-Acoustics
,
Van Karman Institute for Fluid Dynamics
, München, Germany, p.
59
.https://www.researchgate.net/publication/255738493_Low-Order_Analysis_Tools_for_Aero-_and_Thermo-Acoustic_Instabilities
7.
von Saldern
,
J. G. R.
,
Moeck
,
J. P.
, and
Orchini
,
A.
,
2021
, “
Nonlinear Interaction Between Clustered Unstable Thermoacoustic Modes in Can-Annular Combustors
,”
Proc. Combust. Inst.
, 38(4), pp.
6145
6153
.10.1016/j.proci.2020.06.236
8.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
331
(
12
), pp.
2753
2763
.10.1016/j.jsv.2012.02.005
9.
Aguilar
,
J. G.
, and
Juniper
,
M. P.
,
2018
, “
Adjoint Methods for Elimination of Thermoacoustic Oscillations in a Model Annular Combustor Via Small Geometry Modifications
,”
ASME
Paper No. GT2018-75692.10.1115/GT2018-75692
10.
Büche
,
D.
,
Stoll
,
P.
,
Dornberger
,
R.
, and
Koumoutsakos
,
P.
,
2002
, “
Multiobjective Evolutionary Algorithm for the Optimization of Noisy Combustion Processes
,”
IEEE Trans. Syst., Man Cybern. Part C Appl. Rev.
,
32
(
4
), pp.
460
473
.10.1109/TSMCB.2002.804372
11.
Paschereit
,
C. O.
,
Schuermans
,
B.
, and
Büche
,
D.
,
2003
, “
Combustion Process Optimization Using Evolutionary Algorithm
,”
ASME
Paper No. 2003-GT-38393.10.1115/GT2003-38393
12.
Hansen
,
N.
,
Niederberger
,
A.
,
Guzzella
,
L.
, and
Koumoutsakos
,
P.
,
2006
, “
Evolutionary Optimization of Feedback Controllers for Thermoacoustic Instabilities
,”
IUTAM Symposium on Flow Control and MEMS
, London, UK, Sep.10.1007/978-1-4020-6858-4_36
13.
Janiga
,
G.
, and
Thévenin
,
D.
,
2007
, “
Reducing the CO Emissions in a Laminar Burner Using Different Numerical Optimization Methods
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
221
(
5
), pp.
647
655
.10.1243/09576509JPE387
14.
Faramarzi
,
A.
,
Heidarinejad
,
M.
,
Stephens
,
B.
, and
Mirjalili
,
S.
,
2020
, “
Equilibrium Optimizer: A Novel Optimization Algorithm
,”
Knowl.-Based Syst.
,
191
, p.
105190
.10.1016/j.knosys.2019.105190
15.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
16.
Hilgers
,
A.
, and
Boersma
,
B. J.
,
2001
, “
Optimization of Jet Mixing
,”
Fluid Dyn. Res.
,
29
(
6
), pp.
345
368
.10.1016/S0169-5983(01)00035-1
17.
Li
,
R.
,
Noack
,
B. R.
,
Cordier
,
L.
,
Borée
,
J.
, and
Harambat
,
F.
,
2017
, “
Drag Reduction of a Car Model by Linear Genetic Programming Control
,”
Exp. Fluids
,
58
(
8
), pp.
1
20
.10.1007/s00348-017-2382-2
18.
Brunton
,
S. L.
, and
Noack
,
B. R.
,
2015
, “
Closed-Loop Turbulence Control: Progress and Challenges
,”
ASME Appl. Mech. Rev.
,
67
(
5
), p.
050801
.10.1115/1.4031175
19.
Li
,
Y.
,
Cui
,
W.
,
Jia
,
Q.
,
Li
,
Q.
,
Yang
,
Z.
,
Morzynski
,
M.
, and
Noack
,
B. R.
,
2020
, “
Explorative Gradient Method for Active Drag Reduction of the Fluidic Pinball and Slanted Ahmed Body
,”
J. Fluid Mech.
, arXiv:1905.12036.https://arxiv.org/abs/1905.12036
20.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
21.
Orchini
,
A.
,
Illingworth
,
S.
, and
Juniper
,
M.
,
2015
, “
Frequency Domain and Time Domain Analysis of Thermoacoustic Oscillations With Wave-Based Acoustics
,”
J. Fluid Mech.
,
775
, pp.
387
414
.10.1017/jfm.2015.139
22.
Gustavsen
,
B.
, and
Semlyen
,
A.
,
1999
, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Deliv.
,
14
(
3
), pp.
1052
1061
.10.1109/61.772353
23.
Abu-Orf
,
G. M.
, and
Cant
,
R. S.
,
1996
, “
Reaction Rate Modelling for Premixed Turbulent Methane-Air Flames
,”
Proceedings of the Joint Meeting of the Portuguese, British and Swedish Sections of the Combustion Institute
, Madeira, Portugal, Apr. 1–4.http://publications.eng.cam.ac.uk/330797/
24.
Kawanabe
,
H.
,
Shioji
,
M.
,
Tsunooka
,
T.
, and
Ali
,
Y.
,
1998
, “
CFD Simulation for Predicting Combustion and Pollutant Formation in a Homogenuous Charged SI Engine
,”
The Fourth International Symposium COMODIA
, C98, Tokyo, Japan, July 20–23, pp.
233
238
.https://www.academia.edu/551019/CFD_simulation_for_predicting_combustion_and_pollutant_formation_in_a_homogeneous-charge_spark-ignition_engine
25.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
26.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flames Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
27.
Rigas
,
G.
,
Jamieson
,
N. P.
,
Li
,
L. K.
, and
Juniper
,
M. P.
,
2016
, “
Experimental Sensitivity Analysis and Control of Thermoacoustic Systems
,”
J. Fluid Mech.
,
787
, pp.
1
11
.10.1017/jfm.2015.715
28.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.10.1080/00401706.2000.10485979
29.
Wahde
,
M.
,
2008
,
Biologically Inspired Optimization Methods: An Introduction
,
WIT Press, Southampton, UK
.
30.
Bäck
,
T.
, and
Schwefel
,
H.-P.
,
1993
, “
An Overview of Evolutionary Algorithms for Parameter Optimization
,”
Evol. Comput.
,
1
(
1
), pp.
1
23
.10.1162/evco.1993.1.1.1
31.
Trautmann
,
H.
,
Wagner
,
T.
,
Naujoks
,
B.
,
Preuss
,
M.
, and
Mehnen
,
J.
,
2009
, “
Statistical Methods for Convergence Detection of Multi-Objective Evolutionary Algorithms
,”
Evol. Comput.
,
17
(
4
), pp.
493
509
.10.1162/evco.2009.17.4.17403
32.
Humbert
,
S. C.
,
Gensini
,
F.
,
Andreini
,
A.
,
Paschereit
,
C. O.
, and
Orchini
,
A.
,
2021
, “
Nonlinear Analysis of Self-Sustained Oscillations in an Annular Combustor Model With Electroacoustic Feedback
,”
Proc. Combust. Inst.
, 38(4), pp.
6085
6093
.10.1016/j.proci.2020.06.154
You do not currently have access to this content.