Abstract

The measurement of turbine inlet temperature is challenging because of high temperatures and complicated physical access, but continuous measurement of the turbine inlet temperature is very important for maximizing turbine efficiency and increasing durability. This paper provides in situ turbine rotor inlet temperature measurements in an 8200 kW operating gas turbine engine. The measurements were obtained using integrated spectral infrared emission from the water vapor of the combustion gases entering the turbine rotor. The method utilizes a sapphire optical fiber to convey the signal from the turbine wall to outside the turbine casing. All components are capable of long-term exposure to the turbine operating conditions. The temperature measurements were obtained at 6 operating conditions between 50% and full load. The turbine rotor inlet temperature temperature was also determined using more than 20 test cell inputs and Solar Turbine's commercial test cell engine model. The two temperatures (measured and modeled) were within 11 K (less than 1%) across the load sweep. Uncertainty calculations suggest that the uncertainty of the measurement can be expected to be ±2.9% within a confidence interval of 95%. The method also yields the nozzle guide vane surface temperature, which was found to increase monotonically with increasing load.

References

1.
Boyce
,
M. P.
,
2006
,
Gas Turbine Engineering Handbook
,
Gulf Professional Publishing
, Houston, TX, pp.
694
696
.
2.
Perepezko
,
J. H.
,
2009
, “
The Hotter the Engine, the Better
,”
Science
,
326
(
5956
), pp.
1068
1069
.10.1126/science.1179327
3.
Fujimoto
,
K.
,
Fukunaga
,
Y.
,
Hada
,
S.
,
Ai
,
T.
,
Yuri
,
M.
, and
Masada
,
J.
,
2018
, “
Technology Application to MHPS Large Flame F Series Gas Turbine
,”
ASME
Paper No. GT2018-77274.10.1115/GT2018-77274
4.
Horner
,
M. W.
, and
Caruvana
,
A.
,
1982
, “
High-Temperature Turbine Technology Readiness
,”
ASME
Paper No. 82-GT-213.10.1115/82-GT-213
5.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), pp.
873
881
.10.1088/0957-0233/13/6/307
6.
Farrow
,
R. L.
,
Mattern
,
P. L.
, and
Rahn
,
L. A.
,
1982
, “
Comparison Between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame
,”
Appl. Opt.
,
21
(
17
), pp.
3119
3125
.10.1364/AO.21.003119
7.
Greifenstein
,
M.
,
Heinze
,
J.
,
Willert
,
C.
,
Voigt
,
L.
,
Zedda
,
M.
,
Richter
,
C.
, and
Dreizler
,
A.
,
2020
, “
Time-Resolved Temperature Profile Measurements in the Exhaust of a Single Sector Gas Turbine Combustor at Realistic Operating Conditions
,”
Exp. Fluids
,
61
(
8
), p.
177
.10.1007/s00348-020-03011-8
8.
Zhou
,
X.
,
Liu
,
X.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2003
, “
Development of a Sensor for Temperature and Water Concentration in Combustion Gases Using a Single Tunable Diode Laser
,”
Meas. Sci. Technol.
,
14
(
8
), pp.
1459
1468
.10.1088/0957-0233/14/8/335
9.
Buerkle
,
S.
,
Greifenstein
,
M.
,
Wagner
,
S.
,
Dreizler
,
A.
, and
Ebert
,
V.
,
2016
, “
Optical Sensing of Turbine Inlet Temperature in a Pressurized Gas Turbine Combustor
,” Laser Applications to Chemical, Security and Environmental Analysis,
LAACSEA
, Optical Society of America,
Heidelberg, Germany, Paper No.
LT4F.4
.10.1364/LACSEA.2016.LT4F.4
10.
Clausen
,
S.
,
1996
, “
Local Measurement of Gas Temperature With an Infrared Fibre-Optic Probe
,”
Meas. Sci. Technol.
,
7
(
6
), pp.
888
896
.10.1088/0957-0233/7/6/005
11.
Golinelli
,
E.
,
Musazzi
,
S.
,
Perini
,
U.
, and
Barberis
,
F.
,
2014
, “
IR Sensor for Gas Turbine Inlet Temperature (TIT) Measurements: Preliminary Results Test Rig
,”
2014 Fontanica AEIT Italian Conference on Photonics Technologies
, Naples, Italy, May 12–14.10.1109/Fotonica.2014.6843903
12.
Ji
,
J.
, and
Gore
,
J.
,
2001
, “
Emission Spectroscopy Based Temperature Sensor for on-Line Non-Intrusive Gas Turbine Inlet Temperature Measurement
,”
Proceedings of the International Joint Power Generation Conference
, New Orleans, LA, June 4–7, pp.
111
118
.
13.
Ellis
,
D. J.
,
Solovjov
,
V. P.
, and
Tree
,
D. R.
,
2016
, “
Temperature Measurements Using Infrared Spectral Band Emissions From H2O
,”
ASME J. Energy Resour.
Technol.,
138
(
4
), p. 042001.10.1115/1.4032425
14.
Tobiasson
,
J. R.
,
Egbert
,
S. C.
,
Adams
,
B. R.
, and
Tree
,
D. R.
,
2018
, “
An Optical Method for the Measurement of Combustion Gas Temperature in Particle Laden Flows
,”
Environ. Therm. Fluid Sci.
,
98
, pp.
704
711
.10.1016/j.expthermflusci.2018.06.026
15.
Egbert
,
S. C.
,
Zeltner
,
D.
,
Rezasoltani
,
M.
, and
Tree
,
D. R.
,
2020
, “
High Pressure Optical Measurements of Temperature at Turbine Rotor Inlet Conditions
,”
ASME
Paper No. GT2020-14154.10.1115/GT2020-14154
16.
Li
,
H.
,
Wang
,
G.
,
Nirmalan
,
N.
, and
Dasgupta
,
S.
,
2011
, “
Passive Absorption/Emission Spectroscopy for Gas Temperature Measurements in Gas Turbine Engines
,”
ASME
Paper No. GT2011-45152.10.1115/GT2011-45152
17.
Pearson
,
J. T.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure
,”
J. Quant. Spectrosc. Radiat. Transfer
,
138
, pp.
82
96
.10.1016/j.jqsrt.2014.01.019
18.
Rothman
,
L.
,
Gordon
,
I.
,
Barber
,
R.
,
Dothe
,
H.
,
Gamache
,
R.
,
Goldman
,
A.
,
Perevalov
,
V.
,
Tashkun
,
S.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
19.
JCGM
,
2009
, “
Guide to the Expression of Uncertainty in Measurement
,” JCGM, accessed Jan. 11, 2021, https://www.iso.org/sites/JCGM/GUM-JCGM100.htm
20.
Beckman
,
T.
,
Buck
,
N. L.
, and
Marangoli
,
R. D.
,
1982
,
Mechanical Measurements
,
Addison-Wesley
,
Philippines
, pp.
268
288
.
21.
Photran
,
2021
, “
Sapphire Optical Fiber Specifications
,” Photran, accessed Jan. 20, 2021, https://www.photran.com/photran_pages/product_pages/fiber_properties.html
You do not currently have access to this content.