Abstract

Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like “diesel fuel no. 2” can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN gas turbines (MGT) operate with the advanced can combustion (ACC) system, which is capable of ultralow NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In this paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and startup of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.

References

1.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.
2.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press
, Boca Raton, FL.
3.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y. G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.10.1016/j.paerosci.2017.08.001
4.
Lindman
,
O.
,
Andersson
,
M.
,
Persson
,
M.
, and
Munktell
,
E.
,
2014
, “
Development of a Liquid Fuel Combustion System for SGT-750
,”
ASME
Paper No. GT2014-25380.10.1115/GT2014-25380
5.
Zucca
,
A.
,
Khayrulin
,
S.
,
Vyazemskaya
,
N.
,
Shershnyov
,
B.
, and
Myers
,
G.
,
2014
, “
Development of a Liquid Fuel System for GE MS5002E Gas Turbine: Rig Test Validation of the Combustor Performance
,”
ASME
Paper No. GT2014-26046.10.1115/GT2014-26046
6.
Zucca
,
A.
,
Asti
,
A.
,
Evulet
,
A.
,
Khayrulin
,
S.
,
Shershnyov
,
B.
, and
Myers
,
G.
,
2012
, “
Development of a Simplified Back-Up Liquid Fuel System for a Heavy Duty Industrial Gas Turbine
,”
ASME
Paper No. GT2012-70068.10.1115/GT2012-70068
7.
Taylor
,
P.
,
McMillan
,
R.
, and
Baker
,
D.
,
2000
, “
Dual Fuel DLE Typhoon Commercial Operating Experience and Improvement Upgrades
,”
ASME
Paper No. 2000-GT-0112.10.1115/2000-GT-0112
8.
Aigner
,
M.
,
Engelbrecht
,
E. G.
,
Eroglu
,
A.
,
Hellat
,
J.
, and
Syed
,
K. J.
,
1999
, “
Development of an Oil Injection System Optimised to the ABB Double Cone Burner
,”
ASME
Paper No. 99-GT-218.10.1115/99-GT-218
9.
Steinbach
,
C
.
,
Ruck
,
T.
,
Lloyd
,
J.
,
Jansohn
,
P.
,
Döbbeling
,
K.
,
Sattelmayer
,
T.
, and
Strand
,
T.
,
1998
, “
ABB's Advanced EV Burner—A Dual Fuel Dry Low NOx Burner for Stationary Gas Turbines
,”
ASME
Paper No. 98-GT-519.10.1115/98-GT-519
10.
Alkabie
,
H
.
,
McMillan
,
R.
,
Noden
,
R.
, and
Morris
,
C.
,
2000
, “
Dual Fuel Dry Low Emissions (DLE) Combustion System for the ABB Alstom Power 13, 4 MW Cyclone Gas Turbine
,”
ASME
Paper No. 2000-GT-0111.10.1115/2000-GT-0111
11.
Ro̸kke
,
P. E.
,
Hustad
,
J. E.
,
Ro̸kke
,
N. A.
, and
Svendsgaard
,
O. B.
,
2003
, “
Technology Update on Gas Turbine Dual Fuel, Dry Low Emission Combustion Systems
,”
ASME
Paper No. GT2003-38112.10.1115/GT2003-38112
12.
Lauer
,
G.
,
Meisl
,
J.
,
Belting
,
C.
, and
Hoffmann
,
S.
,
2002
, “
Further Development of Low-Emissions Oil Combustion in the V×4, 3A Hybrid Burner
,”
VGB Powertech
,
82
, pp.
51
55
.https://www.researchgate.net/publication/297443531_Further_development_of_lowemissions_oil_combustion_in_the_Vx43A_hybrid_burner
13.
Cramb
,
D. J.
, and
McMillan
,
R.
,
2001
, “
Tempest Dual Fuel DLE Development and Commercial Operating Experience and Ultra Low NOx Gas Operation
,”
ASME
Paper No. 2001-GT-0076.10.1115/2001-GT-0076
14.
Ciani
,
A.
,
Eroglu
,
A.
,
Güthe
,
F.
, and
Paikert
,
B.
,
2010
, “
Full-Scale Atmospheric Tests of Sequential Combustion
,”
ASME
Paper No. GT2010-22891.10.1115/GT2010-22891
15.
Gicquel
,
L. Y.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
16.
Westbrook
,
C. K.
,
Mizobuchi
,
Y.
,
Poinsot
,
T. J.
,
Smith
,
P. J.
, and
Warnatz
,
J.
,
2005
, “
Computational Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
125
157
.10.1016/j.proci.2004.08.275
17.
Aschenbruck
,
E.
,
Cagna
,
M.
,
Langusch
,
V.
,
Orth
,
U.
,
Spiegel
,
A.
,
Wiedermann
,
A.
, and
Wiers
,
S. H.
,
2013
, “
MAN's New Gas Turbines for Mechanical Drive and Power Generation Applications
,”
ASME
Paper No. GT2013-94897.10.1115/GT2013-94897
18.
Saidi
,
K.
,
Orth
,
U.
,
Boje
,
S.
, and
Frekers
,
C.
,
2014
, “
A Comparative Study of Combined Heat and Power Systems for a Typical Food Industry Application
,”
ASME
Paper No. GT2014-26234.10.1115/GT2014-26234
19.
Reiß
,
F.
,
Wiers
,
S. H.
,
Orth
,
U.
,
Aschenbruck
,
E.
,
Lauer
,
M.
, and
El Masalme
,
J.
,
2014
, “
Combustion System Development and Testing for MAN's New Industrial Gas Turbines MGT 6100 and MGT 6200
,”
ASME
Paper No. GT2014-25907.10.1115/GT2014-25907
20.
Bobusch
,
B. C.
,
Woszidlo
,
R.
,
Bergada
,
J. M.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Experimental Study of the Internal Flow Structures Inside a Fluidic Oscillator
,”
Exp. Fluids
,
54
(
6
), p.
1559
.10.1007/s00348-013-1559-6
21.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2020
, “
Interaction Between a Crossflow and a Spatially Oscillating Jet at Various Angles
,”
AIAA J.
,
58
(
6
), pp.
2450
2412
.10.2514/1.J058798
22.
Brandauer
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Mechanisms of Coke Formation in Gas Turbine Combustion Chambers
,”
ASME
Paper No. 95-GT-049.10.1115/95-GT-049
23.
Chin
,
J. S.
, and
Lefebvre
,
A. H.
,
1992
, “
Experimental Study on Hydrocarbon Fuel Thermal Stability
,”
J. Therm. Sci.
,
1
(
1
), pp.
70
74
.10.1007/BF02650809
24.
Bockhorn
,
H.
, ed.,
1994
,
Soot Formation in Combustion: Mechanisms and Models
, Vol.
59
,
Springer Science & Business Media
, Heidelberg, Germany.10.1007/978-3-642-85167-4
25.
Petzold
,
A.
,
Marsh
,
R.
,
Johnson
,
M.
,
Miller
,
M.
,
Sevcenco
,
Y.
,
Delhaye
,
D.
,
Ibrahim
,
A.
,
Williams
,
P.
,
Bauer
,
H.
,
Crayford
,
A.
,
Bachalo
,
W. D.
, and
Raper
,
D.
,
2011
, “
Evaluation of Methods for Measuring Particulate Matter Emissions From Gas Turbines
,”
Environ. Sci. Technol.
,
45
(
8
), pp.
3562
3568
.10.1021/es103969v
26.
Schripp
,
T.
,
Herrmann
,
F.
,
Oßwald
,
P.
,
Köhler
,
M.
,
Zschocke
,
A.
,
Weigelt
,
D.
,
Mroch
,
M.
, and
Werner-Spatz
,
C.
,
2019
, “
Particle Emissions of Two Unblended Alternative Jet Fuels in a Full Scale Jet Engine
,”
Fuel
,
256
, p.
115903
.10.1016/j.fuel.2019.115903
27.
Northrop
,
W. F.
,
Bohac
,
S. V.
,
Chin
,
J. Y.
, and
Assanis
,
D. N.
,
2011
, “
Comparison of Filter Smoke Number and Elemental Carbon Mass From Partially Premixed Low Temperature Combustion in a Direct-Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
, 133(
10
), p.
102804
.10.1115/1.4002918
You do not currently have access to this content.