Abstract

We study the impact of H2 enrichment on the unsteady flow dynamics and thermoacoustic instability in the prediction and control of instabilities in industrial turbines (PRECCINSTA) swirl combustor. The experiments were performed at atmospheric conditions with H2/CH4 fuel mixtures at a global equivalence ratio of 0.65 and a constant thermal power of 20 kW. We analyze data with three fuel compositions: 0%,20%, and 50%H2 in two operating modes, premixed (PM) and technically premixed (TPM). A new multiresolution modal decomposition method, using a combination of wavelet transforms and proper orthogonal decomposition (WPOD) is performed on time resolved flow velocity and OH planar laser induced fluorescence (OH planar laser induced fluorescence (OH-PLIF)) measurements. Thermoacoustic oscillations are observed in the TPM operating mode alone, indicating that the primary heat release driving mechanism is due to fuel-air ratio oscillations. WPOD results for the 0%H2 TPM case reveal intermittent helical precessing vortex core (PVC) oscillations along with axisymmetric hydrodynamic flow oscillations due to the thermoacoustic oscillations. These oscillations cause local flame extinction near the nozzle centerbody resulting in liftoff. A PVC then develops in the flow and enables intermittent flame reattachment. In the 0% H2 premixed case, the flame remains lifted off the centerbody despite the presence of PVC oscillations. H2 enrichment results in the suppression of flame liftoff and the PVC in both operating modes. We show from flow strain rate statistics and extinction strain rate calculations that the increase of the latter with H2 addition, allows the flame to stabilize in the region near the centerbody where the pure CH4 cases show lift off.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,”
AIAA, Reston, VA
.
2.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z.
, and
Ghoniem
,
A. F.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
106
(
4
), pp.
487
510
.10.1016/0010-2180(96)00049-1
3.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and v-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
4.
Preetham
,
Santosh
,
H.
, and
Lieuwen
,
T.
,
2008
, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
,
24
(
6
), pp.
1390
1402
.10.2514/1.35432
5.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
6.
Cho
,
J. H.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
(
1–2
), pp.
116
129
.10.1016/j.combustflame.2004.10.008
7.
Shreekrishna
,
Hemchandra
,
S.
, and
Lieuwen
,
T.
,
2010
, “
Premixed Flame Response to Equivalence Ratio Perturbations
,”
Combust. Theory Modell.
,
14
(
5
), pp.
681
714
.10.1080/13647830.2010.502247
8.
Hemchandra
,
S.
,
2012
, “
Premixed Flame Response to Equivalence Ratio Fluctuations: Comparison Between Reduced Order Modeling and Detailed Computations
,”
Combust. Flame
,
159
(
12
), pp.
3530
3543
.10.1016/j.combustflame.2012.08.003
9.
Hemchandra
,
S.
,
Shanbhogue
,
S.
,
Hong
,
S.
, and
Ghoniem
,
A. F.
,
2018
, “
Role of Hydrodynamic Shear Layer Stability in Driving Combustion Instability in a Premixed Propane-Air Backward-Facing Step Combustor
,”
Phys. Rev. Fluids
,
3
(
6
), p.
063201
.10.1103/PhysRevFluids.3.063201
10.
Acharya
,
V.
, and
Lieuwen
,
T.
,
2012
, “
Dynamics of Premixed Flames Subjected to Helical Disturbances
,”
Combust. Flame
,
159
(
3
), pp.
1139
1150
.10.1016/j.combustflame.2011.09.015
11.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Wahi
,
P.
, and
Sujith
,
R.
,
2012
, “
Route to Chaos for Combustion Instability in Ducted Laminar Premixed Flames
,”
Chaos Interdiscip. J. Nonlinear Sci.
,
22
(
2
), p.
023129
.10.1063/1.4718725
12.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
, Boca Raton, FL.
13.
Cohen
,
J.
, and
Rosfjord
,
T.
,
1993
, “
Influences on the Sprays Formed by High-Shear Fuel Nozzle/ Swirler Assemblies
,”
J. Propul. Power
,
9
(
1
), pp.
16
27
.10.2514/3.51351
14.
Benjamin
,
T. B.
,
1967
, “
Some Developments in the Theory of Vortex Breakdown
,”
J. Fluid Mech.
,
28
(
1
), pp.
65
84
.10.1017/S0022112067001909
15.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.10.1017/S0022112071000181
16.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
17.
Liang
,
H.
, and
Maxworthy
,
T.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.10.1017/S0022112004002629
18.
Billant
,
P.
,
Chomaz
,
J.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.10.1017/S0022112098002870
19.
Escudier
,
M.
, and
Keller
,
J.
,
1985
, “
Recirculation in Swirling Flow-a Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
20.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
21.
Manoharan
,
K.
,
Frederick
,
M.
,
Clees
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2020
, “
A Weakly Nonlinear Analysis of the Precessing Vortex Core Oscillation in a Variable Swirl Turbulent Round Jet
,”
J. Fluid Mech.
,
884
, p.
A29
.10.1017/jfm.2019.903
22.
Anacleto
,
P.
,
Fernandes
,
E.
,
Heitor
,
M.
, and
Shtork
,
S.
,
2003
, “
Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor
,”
Combust. Sci. Technol.
,
175
(
8
), pp.
1369
1388
.10.1080/00102200302354
23.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (Pvc) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
24.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
25.
Boxx
,
I.
,
Arndt
,
C. M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
High-Speed Laser Diagnostics for the Study of Flame Dynamics in a Lean Premixed Gas Turbine Model Combustor
,”
Exp. Fluids
,
52
(
3
), pp.
555
567
.10.1007/s00348-010-1022-x
26.
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3117
3125
.10.1016/j.proci.2012.05.015
27.
Stöhr
,
M.
,
Oberleithner
,
K.
,
Sieber
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2018
, “
Experimental Study of Transient Mechanisms of Bistable Flame Shape Transitions in a Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p. 011503.10.1115/1.4037724
28.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
29.
Yin
,
Z.
, and
Stöhr
,
M.
,
2020
, “
Time–Frequency Localisation of Intermittent Dynamics in a Bistable Turbulent Swirl Flame
,”
J. Fluid Mech.
,
882
, p. A30.10.1017/jfm.2019.762
30.
Mendez
,
M. A.
,
Balabane
,
M.
, and
Buchlin
,
J.-M.
,
2019
, “
Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows
,”
J. Fluid Mech.
,
870
, pp.
988
1036
.10.1017/jfm.2019.212
31.
Karmarkar
,
A.
,
Tyagi
,
A.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2021
, “
Impact of Turbulence on the Coherent Flame Dynamics in a Bluff-Body Stabilized Flame
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
3067
3075
.10.1016/j.proci.2020.08.059
32.
Shanbhogue
,
S.
,
Sanusi
,
Y.
,
Taamallah
,
S.
,
Habib
,
M.
,
Mokheimer
,
E.
, and
Ghoniem
,
A.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
33.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
34.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
35.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
36.
Jackson
,
G. S.
,
Sai
,
R.
,
Plaia
,
J. M.
,
Boggs
,
C. M.
, and
Kiger
,
K. T.
,
2003
, “
Influence of H2 on the Response of Lean Premixed CH4 Flames to High Strained Flows
,”
Combust. Flame
,
132
(
3
), pp.
503
511
.10.1016/S0010-2180(02)00496-0
37.
Mukherjee
,
A.
,
Muthichur
,
N.
,
More
,
C.
,
Gupta
,
S.
, and
Hemchandra
,
S.
,
2021
, “
The Role of the Centerbody Wake on the Precessing Vortex Core Dynamics of a Swirl Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051019
.10.1115/1.4050155
38.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.10.1016/j.combustflame.2015.12.007
39.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
40.
Percival
,
D. B.
, and
Walden
,
A. T.
,
2000
,
Wavelet Methods for Time Series Analysis
, Vol.
4
,
Cambridge University Press
, Cambridge, UK.
41.
Benjamin
,
T. B.
,
1962
, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
04
), pp.
593
629
.10.1017/S0022112062001482
42.
Kaiser
,
T. L.
,
Oberleithner
,
K.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2020
, “
Examining the Effect of Geometry Changes in Industrial Fuel Injection Systems on Hydrodynamic Structures With Biglobal Linear Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011024
.10.1115/1.4045018
43.
Karmarkar
,
A.
,
Gupta
,
S.
,
Boxx
,
I.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2020
, “
Impact of Precessing Vortex Core Dynamics on the Thermoacoustic Instabilities in a Swirl Stabilized Combustor
,”
arXiv:2011.14662
.https://arxiv.org/abs/2011.14662
44.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
William
,
C.
,
Gardiner
,
J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “Gri-Mech,” Gri-Mech, accessed Sept. 2, 2021, http://combustion.berkeley.edu/gri-mech/
You do not currently have access to this content.