Abstract

Model-based control systems are drawing attention in relation to implementing advanced combustion technologies with high thermal efficiency and low emissions, such as homogeneous charge compression ignition and premixed charge compression ignition combustion, having low robustness. A model-based control system for engine combustion derives control inputs based on reference values and operating conditions in each cycle. Thus, it can replace the conventional control map, which necessitates a significant number of experiments. However, model-based control for combustion requires reference values, such as heat-release-rate peak timing and value, which represent the combustion state. In addition, because model-based control systems derive control inputs cycle by cycle, the combustion reference for the transient condition is critical for maximizing the benefit of such systems. Therefore, this study describes a design method of the combustion reference values for transient operation. The combustion method targeted in this study is a premixed compression ignition combustion that exhibits two-stage heat releases and can reduce combustion noise. Particularly, a method using predicted future operating conditions considering the driving characteristics is proposed. Designed combustion reference values with the proposed method were evaluated with engine control experiments in a certain part of worldwide harmonized light vehicles test cycle. Results indicate that the rate of achieving the desired two-stage heat releases combustion improved from 57% to 81% and combustion noise reduced. Thus, designing the combustion reference values for transient operation by considering future operating conditions is effective to ensure advanced combustion. In addition, such a method can consider the driving characteristics.

References

1.
Fontaras
,
G.
,
Zacharof
,
N.-G.
, and
Ciuffo
,
B.
,
2017
, “
Fuel Consumption and CO2 Emissions From Passenger Cars in Europe—Laboratory Versus Real-World Emissions
,”
Prog. Energy Combust. Sci
,
60
, pp.
97
131
.10.1016/j.pecs.2016.12.004
2.
Iwabuchi
,
Y.
,
Kawai
,
K.
,
Shoji
,
T.
, and
Takeda
,
Y.
,
1999
, “
Trial of New Concept Diesel Combustion system—Premixed Compression—Ignited combustion
,”
SAE
Technical Paper No. 1999-01-0185.10.4271/1999-01-0185
3.
Epping
,
K.
,
Aceves
,
S.
,
Bechtold
,
R.
, and
Dec
,
J. E.
,
2002
, “
The Potential of HCCI Combustion for High Efficiency and Low Emissions
,”
SAE
Technical Paper No. 2002-01-1923.10.4271/2002-01-1923
4.
Shaver
,
G. M.
,
Gerdes
,
J. C.
, and
Roelle
,
M. J.
, Mar.
2009
, “
Physics-Based Modeling and Control of Residual-Affected HCCI Engines
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
2
), p. 021002.10.1115/1.3023125
5.
Gorzelic
,
P.
,
Hellström
,
E.
,
Stefanopoulou
,
A.
, and
Li
,
J.
,
2012
, “
Model-Based Feedback Control for an Automated Transfer Out of SI Operation During SI to HCCI Transitions in Gasoline Engines
,”
ASME
Paper No. DSCC2012-MOVIC2012-8779.10.1115/DSCC2012-MOVIC2012-8779
6.
Drews
,
P.
,
Albin
,
T.
,
Heßeler
,
F. J.
,
Peters
,
N.
, and
Abel
,
D.
,
2011
, “
Fuel-Efficient Model-Based Optimal MIMO Control for PCCI Engines
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
12998
13003
.10.3182/20110828-6-IT-1002.01138
7.
Korkmaz
,
M.
,
Zweigel
,
R.
,
Jochim
,
B.
,
Beeckmann
,
J.
,
Abel
,
D.
, and
Pitsch
,
H.
,
2018
, “
Triple-Injection Strategy for Model-Based Control of Premixed Charge Compression Ignition Diesel Engine Combustion
,”
Int. J. Engine Res
,
19
(
2
), pp.
230
240
.10.1177/1468087417730485
8.
Takahashi
,
M.
,
Yamasaki
,
Y.
,
Kaneko
,
S.
,
Fujii
,
S.
,
Mizumoto
,
I.
,
Hayashi
,
T.
,
Asahi
,
T.
, and
Hirata
,
M.
,
2019
, “
Model-Based Control System for Advanced Diesel Combustion
,”
IFAC-PapersOnLine
,
52
(
5
), pp.
171
177
.10.1016/j.ifacol.2019.09.028
9.
Ariyur
,
K. B.
, and
Krstic
,
M.
,
2003
,
Real-Time Optimization by Extremum-Seeking Control
,
Wiley
, Hoboken, NJ.
10.
Makowicki
,
T.
,
Bitzer
,
M.
,
Grodde
,
S.
, and
Graichen
,
K.
,
2017
, “
Cycle-by-Cycle Optimization of the Combustion During Transient Engine Operation
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
11046
11051
.10.1016/j.ifacol.2017.08.2485
11.
Garone
,
E.
,
Cairano
,
S. D.
, and
Kolmanovsky
,
I.
,
2017
, “
Reference and Command Governors for Systems With Constraints: A Survey on Theory and Applications
,”
Automatica
,
75
, pp.
306
328
.10.1016/j.automatica.2016.08.013
12.
KalabićKolmanovsky
,
U.
,
Buckland
,
I. J.
, and
Gilbert
,
E.
,
2011
, “
Reference and Extended Command Governors for Control of Turbocharged Gasoline Engines Based on Linear Models
,”
2011 IEEE International Conference on Control Applications
, Denver, CO, Sept. 28–30, pp.
319
325
.10.1109/CCA.2011.6044457
13.
Kalabic
,
U. V.
,
Buckland
,
J. H.
,
Cooper
,
S. L.
,
Wait
,
S. K.
, and
Kolmanovsky
,
I. V.
,
2016
, “
Reference Governors for Enforcing Compressor Surge Constraints
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1729
1739
.10.1109/TCST.2015.2510334
14.
Nakada
,
H.
,
Martin
,
P.
,
Milton
,
G.
,
Iemura
,
A.
, and
Ohata
,
A.
,
2014
, “
An Application Study of Online Reference Governor to Boost Pressure Control for Automotive Diesel Engines
,”
Proc. Am. Control Conf.
,
50
(
3
), pp.
3135
3140
.10.1109/ACC.2014.6858582
15.
Nakada
,
H.
,
Milton
,
G.
,
Martin
,
P.
,
Iemura
,
A.
, and
Ohata
,
A.
,
2013
, “
Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control
,”
SAE Int. J. Engines
,
6
(
1
), pp.
257
266
.10.4271/2013-01-0350
16.
Jade
,
S.
,
Hellström
,
E.
,
Larimore
,
J.
,
Stefanopoulou
,
A. G.
, and
Jiang
,
L.
,
2014
, “
Reference Governor for Load Control in a Multicylinder Recompression HCCI Engine
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1408
1421
.10.1109/TCST.2013.2283275
17.
Corti
,
E.
,
Forte
,
C.
,
Mancini
,
G.
, and
Moro
,
D.
,
2014
, “
Automatic Combustion Phase Calibration With Extremum Seeking Approach
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091402
.10.1115/1.4027188
18.
Zhang
,
Y.
, and
Shen
,
T.
,
2017
, “
Cylinder Pressure Based Combustion Phase Optimization and Control in Spark-Ignited Engines
,”
Control Theory Technol.
,
15
(
2
), pp.
83
91
.10.1007/s11768-017-6175-1
19.
Yasuda
,
K.
,
Yamasaki
,
Y.
,
Kaneko
,
S.
,
Nakamura
,
Y.
,
Iida
,
N.
, and
Hasegawa
,
R.
,
2016
, “
Diesel Combustion Model for on-Board Application
,”
Int. J. Engine Res
,
17
(
7
), pp.
748
765
.10.1177/1468087415611331
20.
Yamasaki
,
Y.
,
Ikemura
,
R.
, and
Kaneko
,
S.
,
2018
, “
Model-Based Control of Diesel Engines With Multiple Fuel Injections
,”
Int. J. Engine Res
,
19
(
2
), pp.
257
265
.10.1177/1468087417747738
21.
Yamasaki
,
Y.
,
Ikemura
,
R.
,
Takahashi
,
M.
,
Kaneko
,
S.
, and
Uemichi
,
A.
,
2019
, “
Multiple-Input Multiple-Output Control of Diesel Combustion Using a Control-Oriented Model
,”
Int. J. Engine Res
,
20
(
10
), pp.
1005
1016
.10.1177/1468087418820739
22.
Dulbecco
,
A.
,
Lafossas
,
F.-A.
,
Mauviot
,
G.
, and
Poinsot
,
T. J.
,
2009
, “
A New 0D Diesel HCCI Combustion Model Derived From a 3D CFD Approach With Detailed Tabulated Chemistry
,”
Oil Gas Sci. Technol.—Rev. l'IFP
,
64
(
3
), pp.
259
284
.10.2516/ogst/2008051
23.
Shibata
,
G.
,
Nakayama
,
D.
,
Okamoto
,
Y.
, and
Ogawa
,
H.
,
2016
, “
Diesel Engine Combustion Noise Reduction by the Control of Timings and Heating Values in Two Stage High Temperature Heat Releases
,”
SAE Int. J. Engines
,
9
(
2
), pp.
868
882
.10.4271/2016-01-0731
24.
Fuyuto
,
T.
,
Taki
,
M.
,
Ueda
,
R.
,
Hattori
,
Y.
,
Kuzuyama
,
H.
, and
Umehara
,
T.
,
2014
, “
Noise and Emissions Reduction by Second Injection in Diesel PCCI Combustion With Split Injection
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1900
1910
.10.4271/2014-01-2676
25.
Ravi
,
N.
,
Roelle
,
M. J.
,
Liao
,
H.-H.
,
Jungkunz
,
A. F.
,
Chang
,
C.-F.
,
Park
,
S.
, and
Gerdes
,
J. C.
,
2010
, “
Model-Based Control of HCCI Engines Using Exhaust Recompression
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1289
1302
.10.1109/TCST.2009.2036599
26.
Yamasaki
,
Y.
,
Ikemura
,
R.
,
Takahashi
,
M.
,
Shimizu
,
F.
, and
Kaneko
,
S.
,
2019
, “
Simple Combustion Model for a Diesel Engine With Multiple Fuel Injections
,”
Int. J. Engine Res.
,
20
(
2
), pp.
167
180
.10.1177/1468087417742764
27.
Reitz
,
R. D.
, and
Bracco
,
F. B.
,
1979
, “
On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1289
1302
.10.4271/790494
28.
Livengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Symp. Combust.
,
5
(
1
), pp.
347
355
.10.1016/S0082-0784(55)80047-1
29.
Tutuianu
,
M.
,
Bonnel
,
P.
,
Ciuffo
,
B.
,
Haniu
,
T.
,
Ichikawa
,
N.
,
Marotta
,
A.
,
Pavlovic
,
J.
, and
Steven
,
H.
,
2015
, “
Development of the World-Wide Harmonized Light Duty Test Cycle (WLTC) and a Possible Pathway for Its Introduction in the European Legislation
,”
Transp. Res. Part D Transp. Environ.
,
40
, pp.
61
75
.10.1016/j.trd.2015.07.011
30.
Ericsson
,
E.
,
2001
, “
Independent Driving Pattern Factors and Their Influence on Fuel-Use and Exhaust Emission Factors
,”
Transp. Res. Part D Transp. Environ.
,
6
(
5
), pp.
325
345
.10.1016/S1361-9209(01)00003-7
31.
Zeng
,
X.
, and
Wang
,
J.
,
2017
, “
A Stochastic Driver Pedal Behavior Model Incorporating Road Information
,”
IEEE Trans. Hum.-Mach. Syst.
,
47
(
5
), pp.
614
624
.10.1109/THMS.2017.2674301
32.
Carl
,
J. R.
, and
Gellman
,
R. S.
,
1987
, “
Human Smooth Pursuit: Stimulus-Dependent Responses
,”
J. Neurophysiol.
,
57
(
5
), pp.
1446
1463
.10.1152/jn.1987.57.5.1446
You do not currently have access to this content.