Abstract

Leading edge serrations are well known for their ability to reduce turbulence-induced noise of single airfoils while also providing aerodynamic advantages under certain operating conditions. Continuatively, applying leading edge serrations to rotating machinery such as axial fans proved the validity to generally transfer the obtained aeroacoustic benefits of single airfoils. However, for the rotating applications, besides the discrete and broadband characteristics of the investigated machines, the noise reduction potential highly depends on the point of operation. This work aims at assessing the aeroacoustic effects of serrated leading edges under the increased geometrical complexity of the fan blades through blade skew, a combination of blade sweep and blade dihedral. Therefore, the question is whether combining two potentially effective noise-reducing treatments through blade skew and leading edge serrations results in leveraging or obstructing effects. By varying the skew angle from 0 deg to 38 deg, four different prototypes of the fan impeller are designed, manufactured, and tested experimentally in a test rig according to ISO 5136 and ISO 5801, allowing for simultaneous assessment of the aerodynamic and acoustic performance of the machines. All configurations are tested with original blades of straight leading edges plus five sets of serrations each, parameterized by the serration amplitude and the serrations wavelength. The intensity of the incoming turbulence ranges from 2.6% to 12.1%. The results obtained show the skewed blades to improve both the aerodynamic performance and the noise radiation after exceeding an initial skew angle, complemented by a significant onset of stall. Moreover, no contraindication between blade skew and serrated leading edges is encountered, showing the potential to further extend the noise reduction capabilities by combining effects of blade skew and leading edge treatment.

References

1.
Sarradj
,
E.
,
Fritzsche
,
C.
, and
Geyer
,
T.
,
2011
, “
Silent Owl Flight: Bird Flyover Noise Measurements
,”
AIAA J.
,
49
(
4
), pp.
769
779
.10.2514/1.J050703
2.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
, “
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
(
1
), pp.
51
60
.10.1002/jmor.1052250105
3.
Kim
,
J. W.
,
Haeri
,
S.
, and
Joseph
,
P. F.
,
2016
, “
On the Reduction of Aerofoil–Turbulence Interaction Noise Associated With Wavy Leading Edges
,”
J. Fluid Mech.
,
792
, pp.
526
552
.10.1017/jfm.2016.95
4.
Turner
,
J. M.
, and
Kim
,
J. W.
,
2017
, “
Aeroacoustic Source Mechanisms of a Wavy Leading Edge Undergoing Vortical Disturbances
,”
J. Fluid Mech.
,
811
, pp.
582
611
.10.1017/jfm.2016.785
5.
Chaitanya
,
P.
,
Joseph
,
P.
,
Narayanan
,
S.
,
Vanderwel
,
C.
,
Turner
,
J.
,
Kim
,
J. W.
, and
Ganapathisubramani
,
B.
,
2017
, “
Performance and Mechanism of Sinusoidal Leading Edge Serrations for the Reduction of Turbulence–Aerofoil Interaction Noise
,”
J. Fluid Mech.
,
818
, pp.
435
464
.10.1017/jfm.2017.141
6.
Chong
,
T. P.
,
Biedermann
,
Till
,
M.
,
Koster
,
O.
, and
Hasheminejad
,
S. M.
,
2018
, “
On the Effect of Leading Edge Serrations on Aerofoil Noise Production
,”
AIAA
Paper No. 2018-3289.10.2514/6.2018-3289
7.
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2011
, “
Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles
,”
AIAA J.
,
49
(
1
), pp.
185
194
.10.2514/1.J050631
8.
van Nierop
,
E. A.
,
Alben
,
S.
, and
Brenner
,
M. P.
,
2008
, “
How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model
,”
Phys. Rev. Lett.
,
100
(
5
), p.
54502
.10.1103/PhysRevLett.100.054502
9.
Rostamzadeh
,
N.
,
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2014
, “
The Formation Mechanism and Impact of Streamwise Vortices on NACA 0021 Airfoil's Performance With Undulating Leading Edge Modification
,”
Phys. Fluids
,
26
(
10
), p.
107101
.10.1063/1.4896748
10.
Soderman
,
P. T.
,
1972
, “Aerodynamic Effects of Leading-Edge Serrations on a Two-Dimensional Airfoil,” Ames Research Center and U.S. Army Air Mobility R&D Laboratory, CA, Report No. NASA TM X-2643.
11.
Krömer
,
F.
, and
Becker
,
S.
,
2018
, “
Experimental Investigation of the Sound Reduction by Leading Edge Serrations on a Flat-Plate Axial Fan
,”
AIAA
Paper No. 2018-2955.10.2514/6.2018-2955
12.
Krömer
,
F. J.
,
2018
, “
Sound Emission of Low-Pressure Axial Fans Under Distorted Inflow Conditions
,” Ph.D. thesis,
Friedrich-Alexander-University Erlangen-Nuremberg
, Erlangen, Germany.
13.
Biedermann
,
T. M.
,
Chong
,
T. P.
,
Kameier
,
F.
, and
Paschereit
,
C. O.
,
2018
, “
On the Transfer of Leading Edge Serrations From Isolated Aerofoil to Ducted Low-Pressure Fan Application
,”
AIAA
Paper No. 2018-2956.10.2514/6.2018-2956
14.
ISO
,
2009
, “Acoustics – Determination of Sound Power Radiated into a Duct by Fans and Other Air-Moving Devices – In-Duct Method,”
ISO
, Geneva, Switzerland, Standard No. 5136:
2009
11
.https://www.iso.org/obp/ui/#iso:std:iso:5136:ed-2:v1:en
15.
ISO,
2008
, “Industrial Fans – Performance Testing Using Standardized Airways,” ISO, Geneva, Switzerland, Standard No. 5801:2018-04.
16.
Biedermann
,
T. M.
,
Kameier
,
F.
, and
Paschereit
,
C. O.
,
2018
, “
Optimised Test Rig for Measurement of Aerodynamic and Aeroacoustic Performance of Leading Edge Serrations in Low-Speed Fan Application
,”
ASME
Paper No. GT2018-75369.
17.
Carolus
,
T.
, and
Starzmann
,
R.
,
2011
, “
An Aerodynamic Design Methodology for Low Pressure Axial Fans With Integrated Airfoil Polar Prediction
,”
ASME
Paper No. GT2011-45243.
18.
Biedermann
,
T. M.
,
2019
, “
Aeroacoustic Transfer of Leading Edge Serrations from Single Aerofoils to Low-Pressure Fan Applications
,” Ph.D. thesis,
Technical University Berlin
,
Berlin, Germany
.
19.
Laws
,
E. M.
, and
Livesey
,
J. L.
,
1978
, “
Flow Through Screens
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
247
266
.10.1146/annurev.fl.10.010178.001335
20.
Madison
,
R. D.
,
1949
,
Fan Engineering (Handbook)
, 5th ed.,
Buffalo Forge Company
,
Buffalo, New York
.
21.
Chaitanya
,
P.
,
Joseph
,
P.
,
Narayanan
,
S.
, and
Kim
,
J. W.
,
2018
, “
Aerofoil Broadband Noise Reductions Through Double-Wavelength Leading-Edge Serrations: A New Control Concept
,”
J. Fluid Mech.
,
855
, pp.
131
151
.10.1017/jfm.2018.620
22.
Biedermann
,
T. M.
,
Czeckay
,
P.
,
Hintzen
,
N.
,
Kameier
,
F.
, and
Paschereit
,
C. O.
,
2020
, “
Applicability of Aeroacoustic Scaling Laws of Leading Edge Serrations for Rotating Applications
,”
Acoust. Open Access J.
,
2
(
3
), pp.
579
594
.10.3390/acoustics2030030
23.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall-Free Operational Range in Axial Fan Rotors
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
218
(
3
), pp.
129
139
.10.1243/095765004323049869
24.
Vad
,
J.
,
Kwedikha
,
A.
,
Horváth
,
C.
,
Balczó
,
M.
,
Lohász
,
M. M.
, and
Regert
,
T.
,
2007
, “
Aerodynamic Effects of Forward Blade Skew in Axial Flow Rotors of Controlled Vortex Design
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
7
), pp.
1011
1023
.10.1243/09576509JPE420
25.
Zarri
,
A.
,
Christophe
,
J.
,
Moreau
,
S.
, and
Schram
,
C.
,
2020
, “
Influence of Swept Blades on Low-Order Acoustic Prediction for Axial Fans
,”
Acoustics
,
2
(
4
), pp.
812
832
.10.3390/acoustics2040046
26.
Carolus
,
T.
, and
Beiler
,
M.
,
1997
, “
Skewed Blades in Low Pressure Fans: A Survey of Noise Reduction Mechanisms
,”
AIAA
Paper No. 97-1591-CP.10.2514/6.1997-1591
27.
Jeena
,
J.
,
Surya
,
S.
, and
Sathyabhama
,
A.
,
2019
, “
A Comparison on the Effect of Leading Edge Tubercle on Straight and Swept Wing at Low Reynolds Number
,”
Proceedings of the 46th National Conference on Fluid Mechanics and Fluid Power (FMFP)
, Coimbatore, India, Dec. 9–11, Paper No. 64.https://www.researchgate.net/publication/342804825_A_Comparison_on_the_Effect_of_Leading_Edge_Tubercle_on_Straight_and_Swept_Wing_at_Low_Reynold
28.
Krömer
,
F.
,
Czwielong
,
F.
, and
Becker
,
S.
,
2019
, “
Experimental Investigation of the Sound Emission of Skewed Axial Fans With Leading-Edge Serrations
,”
AIAA J.
,
57
(
12
), pp.
5182
5196
.10.2514/1.J058134
29.
Beiler
,
M.
,
1996
, “Untersuchung der dreidimensionalen Strömung durch Axialventilatoren mit gekrümmten Schaufeln,” VDI-Verlag Düsseldorf, Germany, Technical Report, Fortschr.-Ber. VDI 7(298).
30.
Blake
,
W. K.
,
2017
, “
Mechanics of Flow-Induced Sound and Vibration
,”
Complex Flow-Structure Interactions
, 2nd Ed., Vol.
2
,
Elsevier Science
,
San Diego, CA
.
You do not currently have access to this content.