Abstract

In this paper, a shell profile design method based on diffuser flow area curve is proposed to improve the static pressure recovery coefficient of the exhaust diffuser over a range of inlet swirl angles. Based on verifying the reliability of the numerical method, the paper first explored the aerodynamic performance of the exhaust diffuser with the original structure and the modified structure by solving three-dimensional Reynolds-Averaged Navier–Stokes. Numerical results well capture the pressure distribution and flow characteristics in the exhaust diffuser. The numerical results show that the shell profile modification method effectively improves the aerodynamic performance of the exhaust diffuser. Compared with the original exhaust diffuser, the secondary vortex near the outer shell of the modified exhaust diffuser is weakened and the axial reverse pressure gradient near the strut is reduced. The static pressure recovery coefficient of the modified exhaust diffuser is significantly increased under different inlet swirl angles. Especially, under the normal working condition with a medium swirl angle (22 deg), the static pressure recovery coefficient increases by 0.034 with a relative increase of 7.6%. Under the extreme working conditions of a large swirl angle (35 deg), the static pressure recovery coefficient increases by 0.074 with a relative increase of 39%. A test rig for measuring the aerodynamic performance of the exhaust diffuser was built, and the validity of the shell profile design method is further verified through experimental measurements.

References

1.
Brown
,
K.
,
Guillot
,
S.
,
Ng
,
W.
,
Iksang
,
L.
,
Dongil
,
K.
, and
Hong
,
G.
,
2020
, “
Experimental Investigation of Gas Turbine Axial Diffuser Performance: Part I — Parametric Analysis of Influential Variables
,”
ASME
Paper No. GT2020-15299. 10.1115/GT2020-15299
2.
Farokhi
,
S.
,
1987
, “
A Trade-Off Study of the Rotor Tip Clearance Flow in a Turbine/Exhaust Diffuser System
,”
ASME
Paper No. 87-GT 229.10.1115/87-GT
3.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross-Section
,”
Fluid Mechanics of Internal Flow
,
G.
Sovran
, ed.,
Elsevier
,
Amsterdam
, The Netherlands, pp.
270
312
.
4.
Sultanian
,
B. K.
,
Nagao
,
S.
, and
Sakamoto
,
T.
,
1999
, “
Experimental and Three-Dimensional CFD Investigation in a Gas Turbine Exhaust System
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
364
374
.10.1115/1.2817129
5.
Xue
,
S.
,
Guillot
,
S.
,
NG
,
W. F.
,
Fleming
,
J.
,
Todd Lowe
,
K.
,
Samal
,
N.
, and
Stang
,
U. E.
,
2016
, “
An Experimental Investigation of the Performance Impact of Swirl on a Turbine Exhaust Diffuser/Collector for a Series of Diffuser Strut Geometries
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092603
.10.1115/1.4032738
6.
Vassiliev
,
V.
,
Irmisch
,
S.
,
Abdel-Wahab
,
S.
, and
Granovskiy
,
A.
,
2012
, “
Impact of the Inflow Conditions on the Heavy-Duty Gas Turbine Exhaust Diffuser Performance
,”
ASME J. Turbomach.
,
134
(
4
), p.
041018
.10.1115/1.4003714
7.
Hirschmann
,
A.
,
Volkmer
,
S.
,
Schatz
,
M.
,
Finzel
,
M. C.
, and
Montgomery
,
M.
,
2012
, “
The Influence of the Total Pressure Profile on the Performance of Axial Gas Turbine Diffusers
,”
ASME J. Turbomach.
,
134
(
2
), p.
021017
.10.1115/1.4003064
8.
Schaefer
,
P.
,
Gieß
,
P. A.
,
Finzel
,
C.
, and
Hofmann
,
W. H.
,
2014
, “
Some Aspects on Inlet Blockage Affecting the Performance of a Heavy Duty Gas Turbine's Exhaust Diffuser
,”
ASME
Paper No. GT2014-25599. 10.1115/GT2014-25599
9.
Kluß
,
D.
,
Stoff
,
H.
, and
Wiedermann
,
A.
,
2009
, “
Effect of Wakes and Secondary Flow on Re-Attachment of Turbine Exit Annular Diffuser Flow
,”
ASME J. Turbomach.
,
131
(
4
), p.
041012
.10.1115/1.3070577
10.
Mihailowitsch
,
M.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2019
, “
Numerical Investigations of an Axial Exhaust Diffuser Coupling the Last Stage of a Generic Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031025
.10.1115/1.4040769
11.
Bauer
,
M.
,
Hummel
,
S.
,
Schatz
,
M.
,
Kegalj
,
M.
, and
Vogt
,
D. M.
,
2022
, “
Investigation of the Flow Field and the Pressure Recovery in a Gas Turbine Exhaust Diffuser at Design, Part-Load and Over-Load Condition
,”
ASME. J. Turbomach.
, 144(8), p. 081010.10.1115/1.4053836
12.
Guillot
,
S.
,
NG
,
W. F.
,
Hamm
,
H. D.
,
Stang
,
U. E.
, and
Lowe
,
K. T.
,
2015
, “
The Experimental Studies of Improving the Aerodynamic Performance of a Turbine Exhaust System
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012601
.10.1115/1.4028020
13.
Schaefer
,
P.
,
Hofmann
,
W. H.
, and
Gieß
,
P. A.
,
2012
, “
Multiobjective Optimization for Duct and Strut Design of an Annular Exhaust Diffuser
,”
ASME
Paper No. GT2012-69211.10.1115/GT2012-69211
14.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2015
, “
Experimental Validation of Numerically Optimized Short Annular Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052604
.10.1115/1.4028679
15.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2015
, “
Investigation of Tabs in Short Annular Diffusers With Swirling Flow
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092601
.10.1115/1.4029695
16.
Ubertini
,
S.
, and
Desideri
,
U.
,
2000
, “
Flow Development and Turbulence Length Scales Within an Annular Gas Turbine Exhaust Diffuser
,”
J. Exp. Therm. Fluid Sci.
,
22
(
1–2
), pp.
55
70
.10.1016/S0894-1777(00)00011-X
17.
Ubertini
,
S.
, and
Desideri
,
U.
,
2000
, “
Experimental Performance Analysis of an Annular Diffuser With and Without Struts
,”
J. Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
183
195
.10.1016/S0894-1777(00)00025-X
18.
Siorek
,
M. P.
,
Guillot
,
S.
,
Xue
,
S.
,
Ng
,
W. F.
,
2018
, “
A Sensitivity Study of Gas Turbine Exhaust Diffuser-Collector Performance at Various Inlet Swirl Angles and Strut Stagger Angles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072602
.10.1115/1.4038856
19.
Dong
,
Y. X.
,
Li
,
Z. G.
,
Li
,
J.
, and
Song
,
L. M.
,
2021
, “
Effects of Struts Profiles and Skewed Angles on the Aerodynamic Performance of Gas Turbine Exhaust Diffuser
,”
Proc. Inst. Mech. Eng., Part A
,
235
(
6
), pp.
1406
1420
.10.1177/0957650920985201
20.
Dong
,
Y. X.
,
Li
,
Z. G.
, and
Li
,
J.
,
2022
, “
An Investigation of the Tapered Strut on Aerodynamic Performance of the Exhaust Diffuser Under Different Swirls
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011006
.10.1115/1.4052383
21.
Japikse
,
D.
,
1984
,
Turbomachinery Diffuser Design Technology
,
Concepts ETI Inc
.,
Norwich, Vermont
, p.
05055
.
22.
Sultanian
,
B. K.
,
2019
,
Logan's Turbomachinery: Flowpath Design and Performance Fundamentals
,
CRC Press
, Boca Raton, FL.
23.
Roach
,
P.
,
1987
, “
The Generation of nearly isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
24.
Boehm
,
B. P.
,
2012
, “
Performance Optimization of a Subsonic Diffuser-Collector Subsystem Using Interchangeable Geometries
,” M.S. thesis,
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
25.
Feldcamp
,
G. K.
, and
Birk
,
A. M.
,
2008
, “
A Study of Modest CFD Models for the Design of an Annular Diffuser With Struts for Swirling Flow
,”
ASME
Paper No. GT2008-50605. 10.1115/GT2008-50605
26.
Ahmed
,
R. I.
,
Abu Talib
,
A. R.
,
Mohd Rafie
,
A. S.
, and
Djojodihardjo
,
H.
,
2017
, “
Aerodynamics and Flight Mechanics of MAV Based on Coanda Effect
,”
Aerosp. Sci. Technol
,
62
, pp.
136
147
.10.1016/j.ast.2016.11.023
27.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.10.1115/1.2098807
You do not currently have access to this content.