Abstract

With the increasing need for flexibility in the electricity grid, combined with longer periods of low electricity prices due to an oversupply of renewable electricity, alternative solutions which include the production of carbon-free fuels in combination with the use of combined cycle power plants, are identified as a possible solution. These so-called power-to-gas-to-power solutions (P2G2P), with hydrogen and ammonia as fuel, require further research to determine their feasibility. Within this scope, the European collaborative project FLEXnCONFU aims at providing an answer toward this feasibility. The specific project idea is to recover excess grid power to produce hydrogen through proton exchange membrane (PEM) water electrolysis. Then, this hydrogen could be stored directly, or it could be fed in an ammonia synthesis process. Finally, the decarbonized fuels (ammonia and/or hydrogen) are burned in the gas turbine to produce electricity with no greenhouse gases (GHG) emission. The aim of this paper is to evaluate the impact of P2G2P system integration in a power plant. Different concepts have been applied to an existing ENGIE plant, based in Belgium, with the idea of installing all the technologies (electrolyzers, compressors, and storage, as well as ammonia fabrication units) on the power plant site. Simulations show that a considerable production time is needed to operate the plant for several hours using these e-fuels. Moreover, hydrogen storage requires an extremely huge footprint, hence it looks more reasonable to operate ammonia synthesis to store large quantities of decarbonized fuel, given the site space constraints. Additionally, Aspen plus models have been realized to evaluate the global efficiency of the P2G2P systems as well as the specific cooling requirements of the added technologies. The global efficiency for the P2H2P (with hydrogen) system is 32%. For the P2A2P (with pure ammonia) and power-to-amonia-to-hydrogen-to power (part of the produced ammonia is cracked to recover hydrogen, feeding the combustion chamber of the combined cycle gas turbine (CCGT) with a blend of 70% NH3 and 30% H2) systems, this global efficiency is reduced, respectively, to 24% and 19%. From these results, it is thus apparent that there remain still several challenges that need to be overcome to make P2G2P an efficient way to decarbonize electricity production. These main challenges are: Increase the efficiency of the transformation processes to limit the energy losses; Enhance hydrogen storage technologies to limit the footprint or develop an efficient hydrogen distribution; Reduce the cost of P2G technologies and especially of PEM electrolyzers; Progress on decarbonized fuels combustion and specifically limit NOx emission for the NH3 firing configuration.

References

1.
FLEXnCONFU
,
2020
, “
Flexibilize Combined Cycle Power Plant Through Power-to-X Solutions Using Non-Conventional Fuels
,” European Commission, Bruxelles, Belgium.
2.
Koschwitz
,
P.
,
2020
, “
Power to Ammonia to Power (P2A2P)
,”
ETN Webinar Flexible Power Generation
, Nov. 3.https://flexnconfu.eu/2020/11/03/flexnconfu-presented-at-etns-webinar-on-flexible-powergeneration/
3.
Grigoriev
,
S.
,
Fateev
,
V.
,
Bessarabov
,
D.
, and
Millet
,
P.
,
2020
, “
Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology
,”
Int. J. Hydrogen Energy
,
45
(
49
), pp.
26036
26058
.10.1016/j.ijhydene.2020.03.109
4.
Kumar
,
S. S.
, and
Himabindu
,
V.
,
2019
, “
Hydrogen Production by Pem Water Electrolysis–a Review
,”
Mater. Sci. Energy Technol.
,
2
(
3
), pp.
442
454
.10.1016/j.mset.2019.03.002
5.
Bessarabov
,
D.
, and
Millet
,
P.
,
2018
,
PEM Water Electrolysis
, Vol.
1
,
Academic Press
, Amsterdam, The Netherlands.
6.
Carmo
,
M.
,
Fritz
,
D. L.
,
Mergel
,
J.
, and
Stolten
,
D.
,
2013
, “
A Comprehensive Review on Pem Water Electrolysis
,”
Int. J. Hydrogen Energy
,
38
(
12
), pp.
4901
4934
.10.1016/j.ijhydene.2013.01.151
7.
Zhang
,
B.
,
Zhang
,
S.-X.
,
Yao
,
R.
,
Wu
,
Y.-H.
, and
Qiu
,
J.-S.
,
2021
, “
Progress and Prospects of Hydrogen Production: Opportunities and Challenges
,”
J. Electron. Sci. Technol.
,
19
(
2
), p.
100080
.10.1016/j.jnlest.2021.100080
8.
Rouwenhorst
,
K.
,
2020
,
Panel Discussion on Next-Generation Ammonia Synthesis
,
University of Twente
, Twente, The Netherlands.https://www.ammoniaenergy.org/articles/panel-discussion-on-next-generation-ammonia-synthesis/
9.
Ruuskanen
,
V.
,
Koponen
,
J.
,
Huoman
,
K.
,
Kosonen
,
A.
,
Niemelä
,
M.
, and
Ahola
,
J.
,
2017
, “
Pem Water Electrolyzer Model for a Power-Hardware-in-Loop Simulator
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
10775
10784
.10.1016/j.ijhydene.2017.03.046
10.
Abdin
,
Z.
,
Webb
,
C.
, and
Gray
,
E. M.
,
2015
, “
Modelling and Simulation of a Proton Exchange Membrane (PEM) Electrolyser Cell
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13243
13257
.10.1016/j.ijhydene.2015.07.129
11.
Flórez-Orrego
,
D.
, and
de Oliveira Junior
,
S.
,
2017
, “
Modeling and Optimization of an Industrial Ammonia Synthesis Unit: An Exergy Approach
,”
Energy
,
137
, pp.
234
250
.10.1016/j.energy.2017.06.157
12.
Valera-Medina
,
A.
,
Gutesa
,
M.
,
Xiao
,
H.
,
Pugh
,
D.
,
Giles
,
A.
,
Goktepe
,
B.
,
Marsh
,
R.
, and
Bowen
,
P.
,
2019
, “
Premixed Ammonia/Hydrogen Swirl Combustion Under Rich Fuel Conditions for Gas Turbines Operation
,”
Int. J. Hydrogen Energy
,
44
(
16
), pp.
8615
8626
.10.1016/j.ijhydene.2019.02.041
13.
Ciniviz
,
M.
, and
Köse
,
H.
,
2012
, “
Hydrogen Use in Internal Combustion Engine: A Review
,”
Int. J. Automot. Eng. Technol.
,
1
(
1
), pp.
1
15
.10.17703/IJACT.2015.3.2.87
14.
Karabeyoglu
,
A.
, and
Evans
,
B.
,
2012
, “
Fuel Conditioning System for Ammonia Fired Power Plants
,”
Proceedings of the 9th Annual NH3 Fuel Association Conference
, San Antonio, TX, Sept. 30−Oct. 3.https://www.ammoniaenergy.org/wp-content/uploads/2021/01/evans-brian.pdf
15.
Nozari
,
H.
,
Karaca
,
G.
,
Tuncer
,
O.
, and
Karabeyoglu
,
A.
,
2017
, “
Porous Medium Based Burner for Efficient and Clean Combustion of Ammonia–Hydrogen–Air Systems
,”
Int. J. Hydrogen Energy
,
42
(
21
), pp.
14775
14785
.10.1016/j.ijhydene.2017.03.234
16.
Iki
,
N.
,
Kurata
,
O.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Suzuki
,
M.
,
Tsujimura
,
T.
, and
Furutani
,
H.
,
2014
, “
Micro Gas Turbine Operation With Kerosene and Ammonia
,”
The 11th Annual NH3 Fuel Conference – NH3, the Renewable Carbon Free Fuel
, Des Moines, IA, Sept. 21–24
, pp.
21
24
.https://www.ammoniaenergy.org/paper/micro-gas-turbine-operation-with-kerosene-and-ammonia/
17.
Xiao
,
H.
, and
Valera-Medina
,
A.
,
2017
, “
Chemical Kinetic Mechanism Study on Premixed Combustion of Ammonia/Hydrogen Fuels for Gas Turbine Use
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p. 081504.10.1115/1.4035911
18.
Mazloomi
,
S.
, and
Sulaiman
,
N.
,
2012
, “
Influencing Factors of Water Electrolysis Electrical Efficiency
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4257
4263
.10.1016/j.rser.2012.03.052
19.
Chai
,
W. S.
,
Bao
,
Y.
,
Jin
,
P.
,
Tang
,
G.
, and
Zhou
,
L.
,
2021
, “
A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels
,”
Renewable Sustainable Energy Rev.
,
147
, p.
111254
.10.1016/j.rser.2021.111254
20.
Liu
,
Z.
, and
Karimi
,
I.
,
2019
, “
Simulation of a Combined Cycle Gas Turbine Power Plant in Aspen Hysys
,”
Energy Procedia
,
158
, pp.
3620
3625
.10.1016/j.egypro.2019.01.901
21.
Yee
,
S. K.
,
Milanovic
,
J. V.
, and
Hughes
,
F. M.
,
2008
, “
Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies
,”
IEEE Trans. Power Systems
,
23
(
1
), pp.
108
118
.10.1109/TPWRS.2007.907384
22.
Falcão
,
D.
, and
Pinto
,
A.
,
2020
, “
A Review on Pem Electrolyzer Modelling: Guidelines for Beginners
,”
J. Cleaner Prod.
,
261
, p.
121184
.10.1016/j.jclepro.2020.121184
23.
Nafeh
,
A. E.-S. A.
,
2011
, “
Hydrogen Production From a pv/Pem Electrolyzer System Using a Neural-Network-Based MPPT Algorithm
,”
Int. J. Numer. Modell.: Electron. Networks, Devices Fields
,
24
(
3
), pp.
282
297
.10.1002/jnm.778
24.
Han
,
B.
,
Mo
,
J.
,
Kang
,
Z.
, and
Zhang
,
F.-Y.
,
2016
, “
Effects of Membrane Electrode Assembly Properties on Two-Phase Transport and Performance in Proton Exchange Membrane Electrolyzer Cells
,”
Electrochim. Acta
,
188
, pp.
317
326
.10.1016/j.electacta.2015.11.139
25.
Yigit
,
T.
, and
Selamet
,
O. F.
,
2016
, “
Mathematical Modeling and Dynamic Simulink Simulation of High-Pressure PEM Electrolyzer System
,”
Int. J. Hydrogen Energy
,
41
(
32
), pp.
13901
13914
.10.1016/j.ijhydene.2016.06.022
26.
Nafchi
,
F. M.
,
Afshari
,
E.
,
Baniasadi
,
E.
, and
Javani
,
N.
,
2019
, “
A Parametric Study of Polymer Membrane Electrolyser Performance, Energy and Exergy Analyses
,”
Int. J. Hydrogen Energy
,
44
(
34
), pp.
18662
18670
.10.1016/j.ijhydene.2018.11.081
27.
Toghyani
,
S.
,
Fakhradini
,
S.
,
Afshari
,
E.
,
Baniasadi
,
E.
,
Jamalabadi
,
M. Y. A.
, and
Shadloo
,
M. S.
,
2019
, “
Optimization of Operating Parameters of a Polymer Exchange Membrane Electrolyzer
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6403
6414
.10.1016/j.ijhydene.2019.01.186
28.
Marangio
,
F.
,
Santarelli
,
M.
, and
Calì
,
M.
,
2009
, “
Theoretical Model and Experimental Analysis of a High Pressure PEM Water Electrolyser for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1143
1158
.10.1016/j.ijhydene.2008.11.083
29.
Agbli
,
K.
,
Péra
,
M.
,
Hissel
,
D.
,
Rallières
,
O.
,
Turpin
,
C.
, and
Doumbia
,
I.
,
2011
, “
Multiphysics Simulation of a Pem Electrolyser: Energetic Macroscopic Representation Approach
,”
Int. J. Hydrogen Energy
,
36
(
2
), pp.
1382
1398
.10.1016/j.ijhydene.2010.10.069
30.
Kim
,
H.
,
Park
,
M.
, and
Lee
,
K. S.
,
2013
, “
One-Dimensional Dynamic Modeling of a High-Pressure Water Electrolysis System for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
2596
2609
.10.1016/j.ijhydene.2012.12.006
31.
Sartory
,
M.
,
Wallnöfer-Ogris
,
E.
,
Salman
,
P.
,
Fellinger
,
T.
,
Justl
,
M.
,
Trattner
,
A.
, and
Klell
,
M.
,
2017
, “
Theoretical and Experimental Analysis of an Asymmetric High Pressure Pem Water Electrolyser Up to 155 Bar
,”
Int. J. Hydrogen Energy
,
42
(
52
), pp.
30493
30508
.10.1016/j.ijhydene.2017.10.112
32.
Atlam
,
O.
,
2009
, “
An Experimental and Modelling Study of a Photovoltaic/Proton-Exchange Membrane Electrolyser System
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6589
6595
.10.1016/j.ijhydene.2009.05.147
33.
Hydrogenics
,
2018
, “
Renewable Hydrogen Solutions
,” Brochure, Cummins Inc., Columbus, IN.
34.
Aspen Technology INC
,
2000
, “
Aspen Plus User Guide Version 10.2
,” Design Simulation and Optimization Systems, Bedford, MA.https://www.aspentech.com/en/products/engineering/aspen-plus
35.
Colbertaldo
,
P.
,
Aláez
,
S. L. G.
, and
Campanari
,
S.
,
2017
, “
Zero-Dimensional Dynamic Modeling of PEM Electrolyzers
,”
Energy Procedia
,
142
, pp.
1468
1473
.10.1016/j.egypro.2017.12.594
36.
Espinosa-López
,
M.
,
Darras
,
C.
,
Poggi
,
P.
,
Glises
,
R.
,
Baucour
,
P.
,
Rakotondrainibe
,
A.
,
Besse
,
S.
, and
Serre-Combe
,
P.
,
2018
, “
Modelling and Experimental Validation of a 46 kw PEM High Pressure Water Electrolyzer
,”
Renewable Energy
,
119
, pp.
160
173
.10.1016/j.renene.2017.11.081
37.
Stolzenburg
,
K.
,
Tsatsami
,
V.
, and
Grubel
,
H.
,
2009
, “
Lessons Learned From Infrastructure Operation in the Cute Project
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
7114
7124
.10.1016/j.ijhydene.2008.06.035
38.
Proton Ventures
,
2020
, “
Company Presentation
,” Slidepack, Schiedam, The Netherlands.https://protonventures.com/whatwe-do/ammonia-solutions/
39.
Dianous
,
V. D.
,
Pique
,
S.
, and
Weinsberger
,
B.
,
2016
, “
Etude Comparative Des Reglementations Guides et Normes Concernant Les Electrolyseurs et le Stockage D'hydrogene
,” Ineris, Verneuil-en-Halatte, Oise, France, Document No. INERIS-DRA-15-149420-06399D.
40.
Dumont
,
P. E.
,
2020
, “
Thermodynamique Avancée Intégration Thermique Des Besoins en Chaleur et en Froid
,”
Faculté Polytechnique de Mons
, Mons, Belgium.
41.
FLEXnCONFU
,
2020
, European Union's Horizon 2020 Research, FLEXnCONFU, Bruxelles, Belgium, accessed Sept. 28, 2022, https://flexnconfu.eu/
42.
Ramos
,
P.
, and
Bellotti
,
D.
,
2020
, “
Preliminary Results and Next Steps
,”
FLEXnCONFU Project WP1 Technical Meeting
, September.
You do not currently have access to this content.