Abstract

The formation of a ground vortex and its ingestion into an aero-engine intake under crosswind conditions play a significant role in the aerodynamic excitation of the fan. Using steady and unsteady numerical simulations, an analysis of the dynamics of several distortion features is presented. For a simplified intake at high crosswind velocities, there is a substantial movement of the ingested ground vortex at the aerodynamic interface plane (AIP). The ingested ground vortex follows a specific trajectory while varying both in size and strength. The transition from a periodic to an aperiodic regime of the intake distortion at the AIP occurs as the crosswind velocity is increased. Circumferential mode decomposition shows that the largest amplitude of the distortion occurs at the first circumferential mode, and the amplitudes of the higher modes decrease monotonically. Furthermore, the amplitude of the spatial harmonics is time-dependent, which may be an influential feature at the time of assessing fan forced response.

References

1.
Hoheisel
,
H.
,
1997
, “
Aerodynamic Aspects of Engine-Aircraft Integration of Transport Aircraft
,”
Aerosp. Sci. Technol.
,
1
(
7
), pp.
475
487
.10.1016/S1270-9638(97)90009-2
2.
Mohankumar
,
B.
,
Hall
,
C.
, and
Wilson
,
M.
,
2021
, “
Fan Aerodynamics With a Short Intake at High Angle of Attack
,”
J. Turbomach.
,
143
(
5
), p.
051003
.10.1115/1.4050606
3.
Tejero
,
F.
,
Goulos
,
I.
,
MacManus
,
D.
, and
Sheaf
,
C.
,
2020
, “
Effects of Aircraft Integration on Compact Nacelle Aerodynamics
,”
AIAA
Paper No. 2020-2225.10.2514/6.2020-2225
4.
Hercock
,
R.
, and
Williams
,
D.
,
1974
, “
Distortion-Induced Engine Instability Aerodynamic Response
,” AGARD, LS72-Paper No. 3, Pennsylvania State University, State College, PA.https://books.google.co.uk/books/about/Distortion_Induced_Engine_Instability.html?id=IKBYAAAAYAAJ&redir_esc=y
5.
Colin
,
Y.
,
Aupoix
,
B.
,
Boussuge
,
J.-F.
, and
Chanez
,
P.
,
2007
, “
Numerical Simulation and Analysis of Crosswind Inlet Flows at Low Mach Numbers
,”
Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows
, Paper Reference No. ISAIF8-0058, Lyon, France, July 2–5, pp.
1
9
.https://hal.archives-ouvertes.fr/hal-03224309/document
6.
Guillard
,
V.
,
2014
, “
Study of the Fan Forced Response Due to Crosswind
,” Master's thesis,
KTH
,
Sweden
.
7.
Wang
,
Z.
,
Chen
,
Y.
,
Ouyang
,
H.
, and
Wang
,
A.
,
2019
, “
Investigation on the Dynamic Response of a Wide-Chord Fan Blade Under Ground Vortex Ingestion
,”
Int. J. Aeronaut. Space Sci.
,
20
(
2
), pp.
405
414
.10.1007/s42405-019-00150-z
8.
Yeung
,
A.
,
Vadlamani
,
N. R.
,
Hynes
,
T.
, and
Sarvankar
,
S.
,
2019
, “
Quasi 3D Nacelle Design to Simulate Crosswind Flows: Merits and Challenges
,”
Int. J. Turbomach., Propul. Power
,
4
(
3
), p.
25
.10.3390/ijtpp4030025
9.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Numerical Analysis of Instabilities for a Low Speed Fan Blade
,”
Proceedings of Shanghai 2017 Global Power and Propulsion Forum
, Shanghai, China, 30 Oct–1 Nov. 2017, No. GPPS-2017-0214, pp.
1
9
.https://www.semanticscholar.org/paper/GPPS-2017-0214-NUMERICAL-ANALYSIS-OFINSTABILITIES-Lee/04bda7e4cba4d18c7032290f2b83f40b48c74246
10.
Trapp
,
L. G.
, and
da Motta Girardi
,
R.
,
2010
, “
Crosswind Effects on Engline Inlets: The Inlet Vortex
,”
J. Aircr.
,
47
(
2
), pp.
577
590
.10.2514/1.45743
11.
MacManus
,
D.
, and
Slaby
,
M.
,
2015
, “
Intake Ground Vortex and Computational Modelling of Foreign Object Ingestion
,”
Aeronaut. J.
,
119
(
1219
), pp.
1123
1145
.10.1017/S0001924000011167
12.
Drewczynski
,
M.
,
Rzadkowski
,
R.
, and
Ostrowska
,
Z.
,
2014
, “
Dynamic Stress Analysis of a Blade in a Partially Blocked Engine Inlet
,”
ASME
Paper No. GT2014-26011.10.1115/GT2014-26011
13.
Siervi
,
F. D.
,
Viguier
,
H. C.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
1982
, “
Mechanisms of Inlet-Vortex Formation
,”
J. Fluid Mech.
,
124
, pp.
173
207
.10.1017/S0022112082002456
14.
Nakayama
,
A.
, and
Jones
,
J. R.
,
1999
, “
Correlation for Formation of Inlet Vortex
,”
AIAA J.
,
37
(
4
), pp.
508
510
.10.2514/2.743
15.
Zantopp
,
S.
,
2008
, “
Jet Engine Ground Vortex Studies
,” M.Sc. thesis,
Cranfield University
, Cranfield, UK.
16.
Murphy
,
J. P.
, and
MacManus
,
D. G.
,
2011
, “
Ground Vortex Aerodynamics Under Crosswind Conditions
,”
Exp. Fluids
,
50
(
1
), pp.
109
124
.10.1007/s00348-010-0902-4
17.
Zantopp
,
S.
,
MacManus
,
D.
, and
Murphy
,
J.
,
2010
, “
Computational and Experimental Study of Intake Ground Vortices
,”
Aeronaut. J. (1968)
,
114
(
1162
), pp.
769
784
.10.1017/S0001924000004255
18.
Murphy
,
J. P.
, and
MacManus
,
D. G.
,
2011
, “
Intake Ground Vortex Prediction Methods
,”
J. Aircr.
,
48
(
1
), pp.
23
33
.10.2514/1.46221
19.
Mishra
,
N.
,
MacManus
,
D.
, and
Murphy
,
J.
,
2012
, “
Intake Ground Vortex Characteristics
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
226
(
11
), pp.
1387
1400
.10.1177/0954410011424092
20.
Jia
,
W.
,
Wu
,
Y.
, and
Lei
,
Y.
,
2020
, “
Generation Mechanism and Aerodynamic Characteristic Modeling of Ground Vortex in Crosswind Condition
,”
Aerosp. Sci. Technol.
,
99
, p.
105581
.10.1016/j.ast.2019.105581
21.
Babcock
,
D. A.
,
Neto
,
L. T.
,
Davis
,
Z.
,
Karman-Shoemake
,
K.
,
Woeber
,
C.
,
Bajimaya
,
R.
, and
MacManus
,
D.
,
2022
, “
Summary of the 5th Propulsion Aerodynamics Workshop: Inlet Cross-Flow Results
,”
AIAA
Paper No. 2022-0814.10.2514/6.2022-0814
22.
Selvanayagam
,
J.
,
Aliaga
,
C.
, and
Stokes
,
J.
,
2022
, “
CFD Simulation of Ground Vortex Intake Test Case Using ANSYS FLUENT
,”
AIAA
Paper No. 2022-0222.10.2514/6.2022-0222
23.
Trapp
,
L. G.
,
de Morais
,
K. C.
,
Abreu
,
D. F.
, and
Neto
,
L. T.
,
2022
, “
Comparison of CFD Ground Vortex Results With the 5th PAW Intake Near the Ground Experiment
,”
AIAA
Paper No. 2022-0223.10.2514/6.2022-0223
24.
Ribeiro
,
A. F.
,
2022
, “
Unsteady Analysis of Ground Vortex Ingestion With LBM-VLES
,”
AIAA
Paper No. 2022-0224.10.2514/6.2022-0224
25.
Potturi
,
A. S.
,
Peroomian
,
O.
, and
Batten
,
P.
,
2022
, “
Computational Analysis of an Inlet Ground Vortex Test Case Using CFD++
,”
AIAA
Paper No. 2022-1252.10.2514/6.2022-1252
26.
Harjes
,
L.
,
Bode
,
C.
,
Grubert
,
J.
,
Frantzheld
,
P.
,
Koch
,
P.
, and
Friedrichs
,
J.
,
2020
, “
Investigation of Jet Engine Intake Distortions Caused by Crosswind Conditions
,”
J. Global Power Propul. Soc.
,
4
, pp.
48
62
.10.33737/jgpps/118875
27.
Mouton
,
S.
,
2021
, “
Simulation of Atmospheric Boundary Layer for Air Inlet Testing in Crossflow
,”
AIAA J.
,
59
(
7
), pp.
2603
2612
.10.2514/1.J059940
28.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids
,”
AIAA J.
,
38
(
6
), pp.
945
954
.10.2514/2.1062
29.
Sayma
,
A. I.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part I: Formulation
,”
J. Fluids Struct.
,
14
(
1
), pp.
87
101
.10.1006/jfls.1999.0253
30.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.10.1016/j.physleta.2011.05.023
31.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan–Part I: Modification of Spalart–Allmaras Turbulence Model
,”
J. Turbomach.
,
140
(
5
), p.
051008
.10.1115/1.4039051
32.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2019
, “
Effects of Inlet Disturbances on Fan Stability
,”
J. Eng. Gas Turbines Power
,
141
(
5
), p.
051014
.10.1115/1.4042204
33.
Vahdati
,
M.
,
Sayma
,
A. I.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part II: Case Studies
,”
J. Fluids Struct.
,
14
(
1
), pp.
103
125
.10.1006/jfls.1999.0254
34.
Stapelfeldt
,
S. C.
,
Parry
,
A. B.
, and
Vahdati
,
M.
,
2016
, “
Investigation of Flutter Mechanisms of a Contra-Rotating Open Rotor
,”
J. Turbomach.
,
138
(
5
), p.
051009
.10.1115/1.4032186
35.
Zhang
,
W.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2020
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotational Speeds
,”
Aerosp. Sci. Technol.
,
98
, p.
105668
.10.1016/j.ast.2019.105668
36.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2018
, “
On the Importance of Engine-Representative Models for Fan Flutter Predictions
,”
J. Turbomach.
,
140
(
8
), p.
081005
.10.1115/1.4040110
37.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2019
, “
Improving the Flutter Margin of an Unstable Fan Blade
,”
J. Turbomach.
,
141
(
7
), p.
071006
.10.1115/1.4042645
38.
AIAA
,
2021
,
5th AIAA Propulsion Aerodynamics Workshop
, AIAA Inlets, Nozzles & Propulsion Systems Integration Technical Committee, Reston, VA, accessed Dec. 22, 2021, https://paw.larc.nasa.gov/wp-content/uploads/sites/83/2020/08/PAW5_Inlet_Participant_Guide.pdf
39.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
You do not currently have access to this content.