Abstract

The study presented in this paper focuses on the analysis of rubbing interactions—including unilateral contact and dry friction—between a rotating fan blade and a rigid casing by frequency domain methods. Two previously published Harmonic Balance Method-based methodologies are assessed: (1) an approach relying on augmented Lagrangians and (2) a second method using a regularized penalty law combined with a Lanczos σ-approximation filter. As a reference point for this comparison, a time-domain numerical strategy relying on a Lagrange multiplier-based contact treatment is considered. All computations are run with the NASA rotor 67 fan blade, an open industrial blade geometry. As it undergoes structural contacts, this blade features an intricate dynamics response, thus making it a challenging case study for nonlinear iterative solvers. The contact scenario is chosen to be an ovalization of the casing with no external forcing. This scenario induces highly nonlinear responses of the blade and complex phenomena such as isolated frequency response curves. The results presented underline a very good agreement of the different strategies with the reference time marching approach. An in-depth comparison is made with an emphasis on nonlinear frequency response curves (NFRC) and time signals. Finally, a physical analysis of the encountered isolas is presented through an in-depth investigation of the main modal contributions for each computed solution. In the end, this paper provides new qualitative elements allowing for a better understanding of rubbing interactions that may not be efficiently obtained with time marching procedures.

References

1.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
,
Cochon
,
S.
, and
Garcin
,
F.
,
2015
, “
Redesign of a High-Pressure Compressor Blade Accounting for Nonlinear Structural Interactions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022502
.10.1115/1.4028263
2.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
3.
Legrand
,
M.
, and
Pierre
,
C.
,
2009
, “
Numerical Investigation of Abradable Coating Wear Through Plastic Constitutive Law: Application to Aircraft Engines
,”
ASME
Paper No. GT2011-45189.10.1115/GT2011-45189
4.
Millecamps
,
A.
,
Batailly
,
A.
,
Legrand
,
M.
, and
Garcin
,
F.
,
2015
, “
Snecma's Viewpoint on the Numerical and Experimental Simulation of Blade-Tip/Casing Unilateral Contacts
,”
ASME
Paper No. GT2015-42682.10.1115/GT2015-42682
5.
Nitschke
,
S.
,
Wollmann
,
T.
,
Ebert
,
C.
,
Behnisch
,
T.
,
Langkamp
,
A.
,
Lang
,
T.
,
Johann
,
E.
, and
Gude
,
M.
,
2019
, “
An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions Under Engine-Like Mechanical Conditions
,”
Wear
,
422
, pp.
161
166
.10.1016/j.wear.2018.12.072
6.
Praveen Krishna
,
I. R.
, and
Padmanabhan
,
C.
,
2018
, “
Experimental and Numerical Investigations on Rotor–Stator Rub
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
18
), pp.
3200
3212
.10.1177/0954406217735348
7.
Salles
,
L.
,
Staples
,
B.
,
Hoffmann
,
N.
, and
Schwingshackl
,
C.
,
2016
, “
Continuation Techniques for Analysis of Whole Aeroengine Dynamics With Imperfect Bifurcations and Isolated Solutions
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1897
1911
.10.1007/s11071-016-3003-y
8.
Sinha
,
S. K.
,
2013
, “
Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event With Contact-Impact Rub Loads
,”
J. Sound Vib.
,
332
(
9
), pp.
2253
2283
.10.1016/j.jsv.2012.11.033
9.
Turner
,
K. E.
,
Padova
,
C.
, and
Dunn
,
M.
,
2011
, “
Airfoil Deflection Characteristics During Rub Events
,”
ASME J. Turbomach.
,
134
(
1
), p.
011018
.10.1115/1.4003257
10.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
11.
Almeida
,
P.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Leblanc
,
X.
, and
Ousty
,
J.-P.
,
2016
, “
Numerical Analysis of Bladed Disk–Casing Contact With Friction and Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122802
.10.1115/1.4033065
12.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2021
, “
The Harmonic Balance Method With Arc-Length Continuation in Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
502
, p.
116070
.10.1016/j.jsv.2021.116070
13.
Lesaffre
,
N.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
,
2007
, “
Contact Analysis of a Flexible Bladed-Rotor
,”
Eur. J. Mech. A. Solids
,
26
(
3
), pp.
541
557
.10.1016/j.euromechsol.2006.11.002
14.
Petrov
,
E. P.
,
2012
, “
Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,”
ASME
Paper No. GT2012-68474.10.1115/GT2012-68474
15.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
,
1991
, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Methods Eng.
,
32
(
1
), pp.
103
128
.10.1002/nme.1620320107
16.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
17.
Ma
,
H.
,
Tai
,
X.
,
Han
,
Q.
,
Wu
,
Z.
,
Wang
,
D.
, and
Wen
,
B.
,
2015
, “
A Revised Model for Rubbing Between Rotating Blade and Elastic Casing
,”
J. Sound Vib.
,
337
, pp.
301
320
.10.1016/j.jsv.2014.10.020
18.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2014
, “
Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor–Stator Dynamics
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2501
2515
.10.1007/s11071-014-1606-8
19.
Petrov
,
E. P.
,
2015
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102502
.10.1115/1.4032906
20.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
21.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
22.
Charleux
,
D.
,
Gibert
,
C.
,
Thouverez
,
F.
, and
Dupeux
,
J.
,
2006
, “
Numerical and Experimental Study of Friction Damping Blade Attachments of Rotating Bladed Disks
,”
Int. J. Rotating Mach.
,
2006
, pp.
1
13
.10.1155/IJRM/2006/71302
23.
Salles
,
L.
,
Gouskov
,
A. M.
,
Blanc
,
L.
,
Thouverez
,
F.
, and
Jean
,
P.
,
2010
, “
Dynamic Analysis of Fretting-Wear in Joint Interface by a Multiscale Harmonic Balance Method Coupled With Explicit or Implicit Integration Schemes
,”
ASME
Paper No. GT2010-23264.10.1115/GT2010-23264
24.
Von Groll
,
G.
, and
Ewins
,
D.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
25.
Woiwode
,
L.
,
Balaji
,
N. N.
,
Kappauf
,
J.
,
Tubita
,
F.
,
Guillot
,
L.
,
Vergez
,
C.
,
Cochelin
,
B.
,
Grolet
,
A.
, and
Krack
,
M.
,
2020
, “
Comparison of Two Algorithms for Harmonic Balance and Path Continuation
,”
Mech. Syst. Signal Process.
,
136
, p.
106503
.10.1016/j.ymssp.2019.106503
26.
Urasek
,
D. C.
, and
Gorrell
,
W. T.
,
1979
, “
Performance Two-Stage Fan Having Low-Aspect-Ratio First-Stage Rotor Blading
,” NASA Paper No. TP-1493, p.
132
.
27.
Doi
,
H.
, and
Alonso
,
J. J.
,
2002
, “
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery
,”
ASME
Paper No. GT2002-30313.10.1115/GT2002-30313
28.
Colaïtis
,
Y.
,
2021
, “
Stratégie Numérique Pour L'analyse Qualitative des Interactions Aube/Carter
,” Ph.D. thesis,
École Polytechnique Montréal
, Montreal, QC.
29.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
30.
Laity
,
D.
,
1980
, “
Stage 67 rotor and Stage 67 Casing Half Stators Mounted
,” Records of the National Aeronautics and Space Administration, NASA, Washington, DC.
31.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. GT2020-14266.10.1115/GT2020-14266
32.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Mathematical Engineering
,
Cham
.
33.
Grolet
,
A.
, and
Thouverez
,
F.
,
2015
, “
Computing Multiple Periodic Solutions of Nonlinear Vibration Problems Using the Harmonic Balance Method and Groebner Bases
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
529
547
.10.1016/j.ymssp.2014.07.015
34.
Volvert
,
M.
, and
Kerschen
,
G.
,
2021
, “
Phase Resonance Nonlinear Modes of Mechanical Systems
,”
J. Sound Vib.
,
511
, p.
116355
.10.1016/j.jsv.2021.116355
You do not currently have access to this content.