Abstract

The total power generation of a wind farm is significantly affected by the adverse wake generation of upstream wind turbines on the aerodynamic performance of the downstream wind turbines. This paper aims to provide a novel hybrid wake control strategy to improve the power generation of horizontal-axis wind turbines in a wind-farm layout. A numerical simulation based on the actuator line method with large eddy simulation (ALM–LES) is performed to investigate the airflow around three-dimensional National Renewable Energy Laboratory (NREL) 5 MW turbines in a three-by-one layout. The yaw angle (θ) and tilt angle (ϕ) of the wind turbines are in the range of (30deg<θ<30deg) and (0<ϕ<35deg), respectively. Firstly, the combined effects of yaw-control and tilt-control methods on the velocity profile, vorticity generation and turbulent kinetic energy in the wake region of the multiscale wind farm are investigated. Afterwards, the total power generation of the wind farm is compared with previous wake control methods of wind turbines. It was observed that the proposed hybrid wake control method could improve the total power generation by 9.94% compared to the previous wind turbine wake control techniques. The hybrid control strategy can deviate the wake much better than typical single-control methods. An optimization analysis is also provided to find the most appropriate yaw angles and tilt angles of the wind turbines subject to varying wind speeds.

References

1.
Adaramola
,
M.
, and
Krogstad
,
P.-Å.
,
2011
, “
Experimental Investigation of Wake Effects on Wind Turbine Performance
,”
Renewable Energy
,
36
(
8
), pp.
2078
2086
.10.1016/j.renene.2011.01.024
2.
Yang
,
X.
,
Pakula
,
M.
, and
Sotiropoulos
,
F.
,
2018
, “
Large-Eddy Simulation of a Utility-Scale Wind Farm in Complex Terrain
,”
Appl. Energy
,
229
, pp.
767
777
.10.1016/j.apenergy.2018.08.049
3.
Dou
,
B.
,
Guala
,
M.
,
Lei
,
L.
, and
Zeng
,
P.
,
2019
, “
Wake Model for Horizontal-Axis Wind and Hydrokinetic Turbines in Yawed Conditions
,”
Appl. Energy
,
242
, pp.
1383
1395
.10.1016/j.apenergy.2019.03.164
4.
Dilip
,
D.
, and
Porté-Agel
,
F.
,
2017
, “
Wind Turbine Wake Mitigation Through Blade Pitch Offset
,”
Energies
,
10
(
6
), p.
757
.10.3390/en10060757
5.
Nash
,
R.
,
Nouri
,
R.
, and
Vasel-Be-Hagh
,
A.
,
2021
, “
Wind Turbine Wake Control Strategies: A Review and Concept Proposal
,”
Energy Convers. Manage.
,
245
, p.
114581
.10.1016/j.enconman.2021.114581
6.
Gebraad
,
P. M.
,
Fleming
,
P. A.
, and
van Wingerden
,
J.-W.
,
2015
, “
Comparison of Actuation Methods for Wake Control in Wind Plants
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
1695
1701
.10.1109/ACC.2015.7170977
7.
Wang
,
J.
,
Bottasso
,
C. L.
, and
Campagnolo
,
F.
,
2016
, “
Wake Redirection: Comparison of Analytical, Numerical and Experimental Models
,”
J. Phys.: Conf. Series
,
753
(
2016
), p.
032064
.10.1088/1742-6596/753/3/032064
8.
Weipao
,
M.
,
Chun
,
L.
,
Jun
,
Y.
,
Yang
,
Y.
, and
Xiaoyun
,
X.
,
2016
, “
Numerical Investigation of Wake Control Strategies for Maximizing the Power Generation of Wind Farm
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p.
034501
.10.1115/1.4033110
9.
Sun
,
H.
, and
Yang
,
H.
,
2018
, “
Study on an Innovative Three-Dimensional Wind Turbine Wake Model
,”
Appl. Energy
,
226
, pp.
483
493
.10.1016/j.apenergy.2018.06.027
10.
Gao
,
X.
,
Li
,
B.
,
Wang
,
T.
,
Sun
,
H.
,
Yang
,
H.
,
Li
,
Y.
,
Wang
,
Y.
, and
Zhao
,
F.
,
2020
, “
Investigation and Validation of 3D Wake Model for Horizontal-Axis Wind Turbines Based on Filed Measurements
,”
Appl. Energy
,
260
, p.
114272
.10.1016/j.apenergy.2019.114272
11.
Sanderse
,
B.
,
Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.10.1002/we.458
12.
Zhang
,
T.-t.
,
Elsakka
,
M.
,
Huang
,
W.
,
Wang
,
Z.-g.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2019
, “
Winglet Design for Vertical Axis Wind Turbines Based on a Design of Experiment and CFD Approach
,”
Energy Convers. Manage.
,
195
, pp.
712
726
.10.1016/j.enconman.2019.05.055
13.
Nilsson
,
K.
,
Ivanell
,
S.
,
Hansen
,
K. S.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
,
Breton
,
S. P.
, and
Henningson
,
D.
,
2015
, “
Large‐Eddy Simulations of the Lillgrund Wind Farm
,”
Wind Energy
,
18
(
3
), pp.
449
467
.10.1002/we.1707
14.
Ali
,
U.
,
Modrek
,
M.
,
Islam
,
M.
, and
Janajreh
,
I.
, “
Numerical Study of Airfoil Shape and Blade Pitching on Vertical Axis Wind Turbine Through CFD Simulations
,”
ASME
Paper No. IMECE2020-24003.10.1115/IMECE2020-24003
15.
Hosseini
,
A.
, and
Goudarzi
,
N.
, “
CFD and Control Analysis of a Smart Hybrid Vertical Axis Wind Turbine
,”
ASME
Paper No. IMECE2018-88469.10.1115/IMECE2018-88469
16.
Naung
,
S. W.
,
Nakhchi
,
M. E.
, and
Rahmati
,
M.
,
2021
, “
An Experimental and Numerical Study on the Aerodynamic Performance of Vibrating Wind Turbine Blade With Frequency-Domain Method
,”
J. Appl. Comput. Mech.
,
7
(
3
), pp.
1737
1750
.10.22055/JACM.2021.37406.3011
17.
Naung
,
S. W.
,
Nakhchi
,
M. E.
, and
Rahmati
,
M.
,
2021
, “
High-Fidelity CFD Simulations of Two Wind Turbines in Arrays Using Nonlinear Frequency Domain Solution Method
,”
Renewable Energy
,
174
, pp.
984
1005
.10.1016/j.renene.2021.04.067
18.
Nakhchi
,
M.
,
Naung
,
S. W.
, and
Rahmati
,
M.
,
2021
, “
High-Resolution Direct Numerical Simulations of Flow Structure and Aerodynamic Performance of Wind Turbine Airfoil at Wide Range of Reynolds Numbers
,”
Energy
,
225
, p.
120261
.10.1016/j.energy.2021.120261
19.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Gentiluomo
,
D.
,
Ferrara
,
G.
, and
Ferrari
,
L.
, “
Comparative Analysis of Different Numerical Techniques to Analyze the Wake of a Wind Turbine
,”
ASME
Paper No. GT2017-64723.10.1115/GT2017-64723
20.
Ahmadi
,
M. H.
, and
Yang
,
Z.
, “
Influence of Yawed Wind Flow on the Blade Forces/Bending Moments and Blade Elastic Torsion for an Axial-Flow Wind Turbine
,”
ASME
Paper No. GT2021-60237.10.1115/GT2021-60237
21.
Zhang
,
J.
, and
Zhao
,
X.
,
2020
, “
A Novel Dynamic Wind Farm Wake Model Based on Deep Learning
,”
Appl. Energy
,
277
, p.
115552
.10.1016/j.apenergy.2020.115552
22.
Maché
,
M.
,
Mouslim
,
H.
, and
Mervoyer
,
L.
, “
From Meso-Scale to Micro Scale LES Modelling: Application by a Wake Effect Study for an Offshore Wind Farm
,”
First Symposium on OpenFOAM® in Wind Energy
, Oldenburg, Germany, Mar. 20–21
, p.
01004
.10.1051/itmconf/20140201004
23.
Bartholomew
,
P.
,
Deskos
,
G.
,
Frantz
,
R. A.
,
Schuch
,
F. N.
,
Lamballais
,
E.
, and
Laizet
,
S.
,
2020
, “
Xcompact3D: An Open-Source Framework for Solving Turbulence Problems on a Cartesian Mesh
,”
SoftwareX
,
12
, p.
100550
.10.1016/j.softx.2020.100550
24.
Cutler
,
J. J.
,
Stanley
,
A. P.
,
Ning
,
A.
, and
Thomas
,
J. J.
, “
Optimization of Turbine Tilt in a Wind Farm
,”
AIAA
Paper No. 2021-1180.10.2514/6.2021-1180
25.
Leloudas
,
S. N.
,
Lygidakis
,
G. N.
,
Strofylas
,
G. A.
, and
Nikolos
,
I. K.
, “
Aerodynamic Shape Optimization of Diffuser Augmented Wind Turbine Shrouds Using Asynchronous Differential Evolution
,”
ASME
Paper No. IMECE2018-86820.10.1115/IMECE2018-86820
26.
Wang
,
Y.
,
Miao
,
W.
,
Ding
,
Q.
,
Li
,
C.
, and
Xiang
,
B.
,
2019
, “
Numerical Investigations on Control Strategies of Wake Deviation for Large Wind Turbines in an Offshore Wind Farm
,”
Ocean Eng.
,
173
, pp.
794
801
.10.1016/j.oceaneng.2019.01.042
27.
Deskos
,
G.
,
Laizet
,
S.
, and
Palacios
,
R.
,
2020
, “
WInc3D: A Novel Framework for Turbulence‐Resolving Simulations of Wind Farm Wake Interactions
,”
Wind Energy
,
23
(
3
), pp.
779
794
.10.1002/we.2458
28.
Dose
,
B.
,
Rahimi
,
H.
,
Herráez
,
I.
,
Stoevesandt
,
B.
, and
Peinke
,
J.
,
2018
, “
Fluid-Structure Coupled computations of the NREL 5 MW Wind Turbine by Means of CFD
,”
Renewable Energy
,
129
, pp.
591
605
.10.1016/j.renene.2018.05.064
29.
Onel
,
H. C.
, and
Tuncer
,
I. H.
,
2021
, “
Investigation of Wind Turbine Wakes and Wake Recovery in a Tandem Configuration Using Actuator Line Model With LES
,”
Comput. Fluids
,
220
, p.
104872
.10.1016/j.compfluid.2021.104872
30.
Sedaghatizadeh
,
N.
,
Arjomandi
,
M.
,
Kelso
,
R.
,
Cazzolato
,
B.
, and
Ghayesh
,
M. H.
,
2018
, “
Modelling of Wind Turbine Wake Using Large Eddy Simulation
,”
Renewable Energy
,
115
, pp.
1166
1176
.10.1016/j.renene.2017.09.017
31.
Ravensbergen
,
M.
,
Mohamed
,
A. B.
, and
Korobenko
,
A.
,
2020
, “
The Actuator Line Method for Wind Turbine Modelling Applied in a Variational Multiscale Framework
,”
Comput. Fluids
,
201
, p.
104465
.10.1016/j.compfluid.2020.104465
32.
Nouri-Borujerdi
,
A.
, and
Nakhchi
,
M.
,
2017
, “
Optimization of the Heat Transfer Coefficient and Pressure Drop of Taylor-Couette-Poiseuille Flows Between an Inner Rotating Cylinder and an Outer Grooved Stationary Cylinder
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1449
1459
.10.1016/j.ijheatmasstransfer.2017.01.014
You do not currently have access to this content.