Abstract

Effects of yawed wind turbines on the wake structure are not fully understood. To obtain a better understanding, numerical studies of a small-scale three-bladed horizontal axis wind turbine at tip speed ratio (TSR) = 6.7 with yaw angles of zero, 15deg, 30deg, and 45deg have been carried out to investigate the wake characteristics of the turbine in the near- and farwake. A hybrid approach coupling large eddy simulation (LES) with actuator line modeling (ALM) has been employed in the present study. The predicted results confirm the previous finding that the turbine wake is asymmetric under yawed approaching flows and the wake is inclined to the direction where the rotor is yawed. The present work further demonstrates that at high yaw angles the main wake may be divided into two smaller parallel wakes further downstream that are not symmetric suggesting a dependency on the turbine rotation direction. This study quantitatively explains how the nonuniform variations of radial velocity components at the turbine plane caused by the yawed flows result in the wake deflection and intersection of hub and blade tip vortices further downstream which leads to the wake splitting at high yaw angles.

References

1.
Stevens
,
R. J. A. M.
, and
Meneveau
,
C.
,
2014
, “
Temporal Structure of Aggregate Power Fluctuations in Large-Eddy Simulations of Extended Wind Farms
,”
J. Renew. Sustain. Energy
,
6
(
4
), p.
043102
.10.1063/1.4885114
2.
Fransden
,
S.
,
2007
, “
Turbulence and Turbulence-generated Structural Loading in Wind Turbine Clusters
,” Ph.D. thesis,
Risø National Laboratory DTU
,
Roskilde, Denmark
.
3.
Neustadter
,
H.
, and
Spera
,
D.
,
1985
, “
Method for Evaluating Wind Turbine Wake Effects on Wind Farm Performance
,”
J. Sol. Energy Eng.
,
107
(
3
), pp.
240
243
.10.1115/1.3267685
4.
Barthelmie
,
R. J.
,
Frandsen
,
S. T.
,
Nielsen
,
M. N.
,
Pryor
,
S. C.
,
Rethore
,
P.
, and
Jørgensen
,
H. E.
,
2007
, “
Modelling and Measurements of Power Losses and Turbulence Intensity in Wind Turbine Wakes at Middelgrunden Offshore Wind Farm
,”
Wind Energy
,
10
(
6
), pp.
517
528
.10.1002/we.238
5.
Porté-Agel
,
F.
,
Bastankhah
,
M.
, and
Shamsoddin
,
S.
,
2020
, “
Wind-Turbine and Wind-Farm Flows: A Review
,”
Boundary-Layer Meteorol.
,
174
(
1
), pp.
1
59
.10.1007/s10546-019-00473-0
6.
Porté-Agel
,
F.
,
Wu
,
Y.
, and
Chen
,
C.
,
2013
, “
A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm
,”
Energies
,
6
(
10
), pp.
5297
5313
.10.3390/en6105297
7.
Hansen
,
K.
,
Barthelmie
,
R.
,
Jensen
,
L.
, and
Sommer
,
A.
,
2012
, “
The Impact of Turbulence Intensity and Atmospheric Stability on Power Deficits Due to Wind Turbine Wakes at Horns Rev Wind Farm
,”
Wind Energy
,
15
(
1
), pp.
183
196
.10.1002/we.512
8.
Ahmadi
,
M. H. B.
, and
Yang
,
Z.
,
2021
, “
Influence of Yawed Wind Flow on the Blade Forces/Bending Moments and Blade Elastic Torsion for an Axial-Flow Wind Turbine
,”
ASME
Paper No. GT2021-60237.10.1115/GT2021-60237
9.
Churchfield
,
M.
,
Wang
,
Q.
,
Scholbrock
,
A.
,
Herges
,
T.
,
Mikkelsen
,
T.
, and
Sjholm
,
M.
,
2016
, “
Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment
,”
J. Phys. Conf. Ser.
,
753
(
3
), p.
032009
.10.1088/1742-6596/753/3/032009
10.
Grant
,
I.
,
Parkin
,
P.
, and
Wang
,
X.
,
1997
, “
Optical Vortex Tracking Studies of a Horizontal Axis Wind Turbine in Yaw Using Laser-Sheet, Flow Visualisation
,”
Exp. Fluids
,
23
(
6
), pp.
513
519
.10.1007/s003480050142
11.
Haans
,
W.
,
Kuik
,
G. V.
, and
Bussel
,
G. J. W. V.
,
2005
, “
Measurement and Modelling of Tip Vortex Paths in the Wake of a HAWT Under Yawed Flow Conditions
,”
AIAA
Paper No. 2005-590.10.2514/6.2005-590
12.
Krogstad
,
P.
, and
Adaramola
,
M. S.
,
2012
, “
Performance and Near Wake Measurements of a Model Horizontal Axis Wind Turbine
,”
Wind Energy
,
15
(
5
), pp.
743
756
.10.1002/we.502
13.
Micallef
,
D.
,
van Bussel
,
G.
,
Ferreira
,
C. S.
, and
Sant
,
T.
,
2013
, “
An Investigation of Radial Velocities for a Horizontal Axis Wind Turbine in Axial and Yawed Flows
,”
Wind Energy
,
16
(
4
), pp.
529
544
.10.1002/we.1503
14.
Shen
,
W. Z.
,
Zhu
,
W. J.
, and
Yang
,
H.
,
2015
, “
Validation of the Actuator Line Model for Simulating Flows Past Yawed Wind Turbine Rotors
,”
J. Power Energy Eng.
,
3
(
7
), pp.
7
13
.10.4236/jpee.2015.37002
15.
Howland
,
M. F.
,
Bossuyt
,
J.
,
Meyers
,
J.
, and
Meneveau
,
C.
,
2016
, “
Wake Structure in Actuator Disk Models of Wind Turbines in Yaw Under Uniform Inflow Conditions
,”
J. Renew. Sust. Energy
,
80
(
043
), p.
301
.10.1063/1.4955091
16.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2016
, “
Experimental and Theoretical Study of Wind Turbine Wakes in Yawed Conditions
,”
J. Fluid Mech.
,
806
, pp.
506
541
.10.1017/jfm.2016.595
17.
Wang
,
J.
,
Foley
,
S.
,
Nanos
,
E. M.
,
Yu
,
T.
,
Campagnolo
,
F.
,
Bottasso
,
C. L.
,
Zanotti
,
A.
, and
Croce
,
A.
,
2017
, “
Numerical and Experimental Study of Wake Redirection Techniques in a Boundary Layer Wind Tunnel
,”
J. Phys. Conf. Ser.
,
854
(
012
), p.
048
.10.1088/1742-6596/854/1/012048
18.
Qian
,
Y.
,
Zhang
,
Z.
, and
Wang
,
T.
,
2018
, “
Comparative Study of the Aerodynamic Performance of the New Mexico Rotor Under Yaw Conditions
,”
Energies
,
11
(
4
), p.
833
.10.3390/en11040833
19.
Arabgolarcheh
,
A.
,
Jannesarahmadi
,
S.
,
Benini
,
E.
, and
Menegozzo
,
L.
,
2021
, “
Numerical Study of a Horizontal Wind Turbine Under Yaw Conditions
,”
J. Power Energy Eng.
,
2021
, pp.
1
17
.10.1155/2021/9978134
20.
Troldborg
,
N.
,
2008
, “
Actuator Line Modelling of Wind Turbine Wakes
,” Ph.D. thesis,
Technical University of Denmark
, Lyngby, Denmark.
21.
Stevens
,
R. J. A. M.
,
Martínez-Tossas
,
L. A.
, and
Meneveau
,
C.
,
2018
, “
Comparison of Wind Farm Large Eddy Simulations Using Actuator Disk and Actuator Line Models With Wind Tunnel Experiments
,”
Renew. Energy
,
116
, pp.
470
478
.10.1016/j.renene.2017.08.072
22.
Ahmadi
,
M. H. B.
, and
Dong
,
P.
,
2017
, “
Validation of the Actuator Line Method for Simulating Flow Through a Horizontal Axis Tidal Stream Turbine by Comparison With Measurements
,”
Renew. Energy
,
113
, pp.
420
427
.10.1016/j.renene.2017.05.060
23.
Ahmadi
,
M. H. B.
, and
Dong
,
P.
,
2017
, “
Numerical Simulations of Wake Characteristics of a Horizontal Axis Tidal Stream Turbine Using Actuator Line Model
,”
Renew. Energy
,
113
, pp.
669
678
.10.1016/j.renene.2017.06.035
24.
Ahmadi
,
M. H. B.
, and
Yang
,
Z.
,
2020
, “
Numerical Study of the Coupling Between the Instantaneous Blade Loading/Power of an Axial Wind Turbine and Upstream Turbulence at High Reynolds Numbers
,”
Energy
,
207
, p.
118167
.10.1016/j.energy.2020.118167
25.
Menon
,
S.
,
Yeung
,
P. K.
, and
Kim
,
W. W.
,
1996
, “
Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence
,”
Comput. Fluids
,
25
(
2
), pp.
165
180
.10.1016/0045-7930(95)00036-4
26.
OpenFOAM, 2022, “
Released Via the OpenFOAM Foundation
,” OpenFOAM, London, UK, accessed Sept. 9, 2022, http://openfoam.org
27.
Rhie
,
C.
, and
Chow
,
W.
,
1983
, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
, pp.
1225
1232
.10.2514/3.8284
28.
So̸rensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modelling of Wind Turbine Wakes
,”
J. Fluids Eng.
,
124
(
2
), pp.
393
399
.10.1115/1.1471361
29.
Shen
,
W. Z.
,
Zhu
,
W. J.
, and
Sørensen
,
J. N.
,
2012
, “
Actuator Line/Navier-Stokes Computations for the Mexico Rotor: Comparison With Detailed Measurements
,”
Wind Energy
,
15
(
5
), pp.
811
825
.10.1002/we.510
30.
Schepers
,
J.
, and
Snel
,
H.
,
2007
, Mexico, Model Experiments in Controlled Conditions. Energy Research Center of the Netherlands, Petten, The Netherlands, Report No. ECNE-07-042.
31.
Schepers
,
J.
,
Boorsma
,
K.
,
Cho
,
T.
,
Gomez-Iradi
,
S.
,
Schaffarczyk
,
P.
,
Jeromin
,
A.
,
Shen
,
W. Z.
,
Lutz
,
T.
,
Meister
,
K.
,
Stoevesandt
,
B.
,
Schreck
,
S.
,
Micallef
,
D.
,
Pereira
,
R.
,
Sant
,
T.
,
Aagaard Madsen
,
H.
, and
Sørensen
,
N. N.
,
2012
, “Analysis of Mexico Wind Tunnel Measurements Final Report of IEA Task 29, Mexnext (Phase 1), Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands,” Report No. ECN. ECN-E-12-004.
32.
Gao
,
Z.
,
Li
,
Y.
,
Wang
,
T.
,
Shen
,
W.
,
Zheng
,
X.
,
Pröbsting
,
S.
,
Li
,
D.
, and
Li
,
R.
,
2021
, “
Modelling the Nacelle Wake of a Horizontal-Axis Wind Turbine Under Different Yaw Conditions
,”
Renew. Energy
,
172
, pp.
263
275
.10.1016/j.renene.2021.02.140
33.
Nilsson
,
K.
,
Shen
,
W. Z.
,
Sørensen
,
J. N.
,
Breton
,
S. P.
, and
Ivanell
,
S.
,
2015
, “
Validation of the Actuator Line Method Using Near Wake Measurements of the Mexico Rotor
,”
Wind Energy
,
18
(
3
), pp.
499
514
.10.1002/we.1714
34.
Chaudhari
,
A.
,
2014
, “
Large eddy simulation of wind flows over complex terrains for wind energy applications
,” Ph.D. thesis,
Lappeenranta University of Technology
,
Lappeenranta, Finland
.
35.
Sørensen
,
N. N.
,
Zahle
,
F.
,
Boorsma
,
K.
, and
Schepers
,
G.
,
2016
, “
CFD Computations of the Second Round of Mexico Rotor Measurements
,”
J. Phys.: Conf. Ser.
,
753
, p.
022054
.10.1088/1742-6596/753/2/022054
36.
Liao
,
C. C.
,
Shi
,
K. Z.
, and
Zhao
,
X. L.
,
2019
, “
Predicting the Extreme Loads in Power Production of Large Wind Turbines Using an Improved PSO Algorithm
,”
Appl. Sci.
,
9
(
3
), p.
521
.10.3390/app9030521
You do not currently have access to this content.