Abstract

Automotive turbochargers (TCs) use an engine oil lubricated bearing system to produce acceptable performance (as per the engine volumetric efficiency) and proven reliability. However, the bearings also cause TC rotordynamic responses that are rich in subsynchronous whirl motions through reaching stable limit cycles. The paper describes the lubrication model for a finite length semifloating ring bearing (SFRB) system and its coupling to the rotor and ring structure models for prediction of both linear and nonlinear system responses and their characterization in terms of motion amplitudes and whirl frequency content. The SFRB model includes a thermal energy transport network for the inner and outer films in both radial bearings and the thrust bearings located on the end sides of the ring. The large temperature difference between the hot shaft and a cold housing induces a three-dimensional thermal gradient in the fluid films and the floating ring, further exacerbated by the heat generated from drag power losses in the inner films adjacent to the rotor. The temperature gradients affect the lubricant viscosity and the bearing system operating clearances. The integration of the rotor bearing system (RBS) equations of motion accounts for the SFRB nonlinear forces and starts from a static equilibrium position, if existing. Analysis of the startup speed response of a commercial TC, from 500 Hz (30 krpm) to 4000 Hz (240 krpm), and for particular mass imbalance conditions, shows dominant subsynchronous vibrations (SSVs) with frequencies ranging from approximately ¼ to ∼ ½ of shaft speed and a transition from conical to cylindrical-bending rotor mode shapes. The model predictions of nonlinear behavior are accurate when benchmarked to a set of measurements procured in a gas stand test rig. The analysis also investigates the influence of the bearing inner clearance and rotor mass imbalance distribution on the onset, persistence, and severity of SSV.

References

1.
Watel
,
E.
,
Pagot
,
A.
,
Pacaud
,
P.
, and
Schmitt
,
J. C.
,
2010
, “
Matching and Evaluating Methods for Euro 6 and Efficient Two-Stage Turbocharging Diesel Engine
,”
SAE
Paper No. 2010-01-1229.
2.
Kirwan
,
J. E.
,
Shost
,
M.
,
Roth
,
G.
, and
Zizelman
,
J.
,
2010
, “
3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOX Emissions
,”
SAE Int. J. Engines
,
3
(
1
), pp.
355
371
.10.4271/2010-01-0590
3.
Bonello
,
P.
,
2009
, “
Transient Modal Analysis of the Non-Linear Dynamics of a Turbocharger on Floating Ring Bearings
,”
Proc. IMechE, Part J
,
223
(
1
), pp.
79
93
.10.1243/13506501JET436
4.
San Andrés
,
L.
,
Jung
,
W.
, and
Hong
,
S. K.
,
2021
, “
A Thermo-Hydrodynamic Model for Thermal Energy Flow Management in a (Semi) Floating Ring Bearing System for Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
143
(
1
), p.
011013
.10.1115/1.4048800
5.
San Andrés
,
L.
, and
Kerth
,
J.
,
2004
, “
Thermal Effects on the Performance of Floating Ring Bearing for Turbocharger
,”
Proc. IMechE, Part J
,
218
(
5
), pp.
437
450
.10.1243/1350650042128067
6.
San Andrés
,
L.
,
Barbarie
,
V.
,
Bhattacharya
,
A.
, and
Gjika
,
K.
,
2012
, “
On the Effect of Thermal Energy Transport to the Performance of (Semi) Floating Ring Bearing Systems for Automotive Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102507
.10.1115/1.4007059
7.
San Andrés
,
L.
,
Yu
,
F.
, and
Gjika
,
K.
,
2018
, “
On the Influence of Lubricant Supply Conditions and Bearing Configuration to the Performance of (Semi) Floating Ring Bearing Systems for Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032503
.10.1115/1.4037920
8.
Holt
,
C.
,
San Andrés
,
L.
,
Sahay
,
S.
,
Tang
,
P.
,
La Rue
,
G.
, and
Gjika
,
K.
,
2005
, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
107
115
.10.1115/1.1857922
9.
Gjika
,
K.
,
San Andrés
,
L.
, and
Larue
,
G. D.
,
2010
, “
Nonlinear Dynamic Behavior of Turbocharger Rotor-Bearing Systems With Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment
,”
ASME J. Comput. Nonlinear Dynam.
,
5
(
4
), p.
041006
.10.1115/1.4001817
10.
San Andrés
,
L.
,
Rivadeneira
,
J. C.
,
Gjika
,
K.
,
Groves
,
C.
, and
LaRue
,
G.
,
2007
, “
A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1035
1046
.10.1115/1.2436573
11.
San Andrés
,
L.
,
Maruyama
,
A.
,
Gjika
,
K.
, and
Xia
,
S.
,
2010
, “
Turbocharger Nonlinear Response With Engine-Induced Excitations: Predictions and Test Data
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032502
.10.1115/1.3159368
12.
San Andrés
,
L.
, and
Vistamehr
,
A.
,
2010
, “
Nonlinear Rotordynamics of Vehicle Turbochargers: Parameters Affecting Sub Harmonic Whirl Frequencies and Their Jump
,”
Proceedings of the 8th IFToMM Rotordynamics International Conference
, Seoul, South Korea, Sept. 12–15.https://rotorlab.tamu.edu/TRIBGROUP/TPS%20papers/2010%20IFToMM%20WeE3-2%20TC%20jump%20TAMU.pdf
13.
Liang
,
F.
,
Li
,
Y.
,
Zhou
,
M.
,
Xu
,
Q.
, and
Du
,
F.
,
2017
, “
Integrated Three-Dimensional Thermohydrodynamic Analysis of Turbocharger Rotor and Semifloating Ring Bearings
,”
ASME J. Eng. Gas Turb. Power
,
139
(
8
), p.
082501
.10.1115/1.4035735
14.
Zhang
,
C.
,
Men
,
R.
,
Wang
,
Y.
,
He
,
H.
, and
Chen
,
W.
,
2019
, “
Experimental and Numerical Investigation on Thermodynamic Performance of Full-Floating Ring Bearings With Circumferential Oil Groove
,”
Proc. IMechE, Part J
, 233(8), pp.
1182
1196
.10.1177/1350650119826421
15.
Peixoto
,
T. F.
,
Nordmann
,
R.
, and
Cavalca
,
K. L.
,
2021
, “
Dynamic Analysis of Turbochargers With Thermo-Hydrodynamic Lubrication Bearings
,”
J. Sound Vib.
,
505
, p.
116140
.10.1016/j.jsv.2021.116140
16.
Schweizer
,
B.
, and
Sievert
,
M.
,
2009
, “
Nonlinear Oscillations of Automotive Turbocharger Turbines
,”
J. Sound Vib.
,
321
(
3–5
), pp.
955
975
.10.1016/j.jsv.2008.10.013
17.
Schweizer
,
B.
,
2009
, “
Total Instability of Turbocharger Rotors—Physical Explanation of the Dynamic Failure of Rotors With Full-Floating Ring Bearings
,”
J. Sound Vib.
,
328
(
1–2
), pp.
156
190
.10.1016/j.jsv.2009.03.028
18.
Vengala
,
P.
,
Chandrasekaran
,
L.
,
Selvaraj
,
P. K.
, and
Arthanarisamy
,
S. D.
,
2019
, “
Investigation of Sub Synchronous Vibration of Very High Speed Turbocharger Semi-Floating Bearing System: Prediction vs Test
,”
ASME
Paper No. IMECE2019-11986.10.1115/IMECE2019-11986
19.
Murphy
,
B. T.
,
2019
, “
XLRotor Version 5.60
,” XLRotor, Austin, TX.
20.
Shampine
,
L. F.
,
1982
, “
Implementation of Rosenbrock Methods
,”
ACM ToMS
,
8
(
2
), pp.
93
113
.10.1145/355993.355994
21.
Jung
,
W.
,
2021
, “
A Nonlinear Rotordynamics Model for Automotive Turbochargers Coupled to a Physical Model for (Semi) Floating Ring Bearing System
,”
Ph.D. dissertation
,
Mechanical Engineering, Texas A&M University
,
College Station, TX
.10.1115/1.4055365
22.
IRD Balancing
,
2001
, “
Balance Quality Requirements of Rigid Rotors: The Practical Application of ISO 1940/1
,” IRD Balancing, Louisville, KY.https://irdproducts.com/assets/balance_quality_requirements_of_rigid_rotors.pdf
23.
Lee
,
I. B.
, and
Kim
,
J. B.
,
2016
, KeyYang Precision Co., Ltd., Gimcheon, South Korea 39537, personal communication.
24.
Singh
,
S. K.
,
Singh
,
S.
, and
Sehgal
,
A. K.
,
2016
, “
Impact of Low Viscosity Engine Oil on Performance, Fuel Economy and Emissions of Light Duty Diesel Engine
,”
SAE
Paper No. 2016-01-2316. 10.4271/2016-01-2316
25.
Smolík
,
L.
,
Hajžman
,
M.
, and
Byrtus
,
M.
,
2017
, “
Investigation of Bearing Clearance Effects in Dynamics of Turbochargers
,”
Int. J. Mech. Sci.
,
127
, pp.
62
72
.10.1016/j.ijmecsci.2016.07.013
26.
Wang
,
L.
,
Wang
,
A.
,
Yin
,
Y.
,
Heng
,
X.
, and
Jin
,
M.
,
2022
, “
Effects of Unbalance Orientation on the Dynamic Characteristics of a Double Overhung Rotor System for High-Speed Turbochargers
,”
Nonlinear Dynam.
,
107
(
1
), pp.
665
681
.10.1007/s11071-021-07068-w
27.
Wang
,
L.
,
Wang
,
A.
,
Jin
,
M.
,
Huang
,
Q.
, and
Yin
,
Y.
,
2020
, “
Nonlinear Effects of Induced Unbalance in the Rod Fastening Rotor-Bearing System Considering Nonlinear Contact
,”
Arch. Appl. Mech.
,
90
(
5
), pp.
917
943
.10.1007/s00419-019-01645-7
You do not currently have access to this content.