Abstract

In this paper, we experimentally investigate the thermoacoustic instability issue in an annular combustor with 16 oblique-injecting premixed swirling burners. It is demonstrated that there exist three dominant modes in a narrow operating range: a Helmholtz mode, a first-order azimuthal mode, and a second-order azimuthal mode. Their modal frequencies are consistent with the simulating prediction of a Helmholtz solver. Our present investigations are more focused on the second-order azimuthal modes which are comparatively infrequently observed in the experiments of model annular combustors. The dynamic mode decomposition approach is used to postprocess the high-speed flame images, revealing the primary dynamic structure of the flame responses for the three self-excited thermoacoustic modes. A pressure field analyzing ansatz has been involved to feature the self-excited azimuthal instabilities, including their dynamical nature (standing, spinning, or mixed) and the time-varying pressure antinodes. Results indicate that the first-order and second-order azimuthal modes both exhibit a standing nature with relatively fixed pressure antinodes. Additionally, in a transition case where these two azimuthal modes co-exist, the first-order azimuthal mode behaves as a weakly oscillating standing mode whose pressure antinodes exhibit a fat-tailed distribution. Exceptionally, the second-order azimuthal mode is split into a pair of nondegenerate modes with two close frequencies. And the split pairs are found to yield distinct pressure antinodes that are orthogonal to each other.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
2.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, pp. 1–95.10.1017/jfm.2020.239
3.
Vignat
,
G.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2020
, “
Combustion Dynamics of Annular Systems
,”
Combust. Sci. Technol.
,
192
(
7
), pp.
1358
1388
.10.1080/00102202.2020.1734583
4.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
5.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines.
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
6.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
7.
Vignat
,
G.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2020
, “
High Amplitude Combustion Instabilities in an Annular Combustor Inducing Pressure Field Deformation and Flame Blow Off
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011016
.10.1115/1.4045515
8.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor
,”
Combust. Flame
,
175
, pp.
283
291
.10.1016/j.combustflame.2016.05.021
9.
Bourgouin
,
J. F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.10.1016/j.proci.2014.06.029
10.
Yang
,
D.
,
Laera
,
D.
, and
Morgans
,
A. S.
,
2019
, “
A Systematic Study of Nonlinear Coupling of Thermoacoustic Modes in Annular Combustors
,”
J. Sound Vib.
,
456
, pp.
137
161
.10.1016/j.jsv.2019.04.025
11.
Moeck
,
J. P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Nonlinear Thermoacoustic Mode Synchronization in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5343
5350
.10.1016/j.proci.2018.05.107
12.
Paschereit
,
C.
,
Schuermans
,
B.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors
,”
AIAA
Paper No. 2006-549.10.2514/6.2006-549
13.
Cohen
,
J.
, Hagen, G., Banaszuk, A., Becz, S., and Mehta, P.,
2011
, “
Attenuation of Gas Turbine Combustor Pressure Oscillations Using Symmetry Breaking
,”
AIAA
Paper No. 2011-60.10.2514/6.2011-60
14.
Æsøy
,
E.
,
Indlekofer
,
T.
,
Gant
,
F.
,
Cuquel
,
A.
,
Bothien
,
M. R.
, and
Dawson
,
J. R.
,
2022
, “
The Effect of Hydrogen Enrichment, Flame-Flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
,”
Combust. Flame
,
242
, p.
112176
.10.1016/j.combustflame.2022.112176
15.
Aguilar
,
J. G.
,
Dawson
,
J. R.
,
Schuller
,
T.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2021
, “
Locking of Azimuthal Modes by Breaking the Symmetry in Annular Combustors
,”
Combust. Flame
,
234
, p.
111639
.10.1016/j.combustflame.2021.111639
16.
Kim
,
J.
, Gillman, W., John, T., Adhikari, S., Wu, D., Emerson, B., Acharya, V., et al.,
2021
, “
Experimental Investigation of Fuel Staging Effect on Modal Dynamics of Thermoacoustic Azimuthal Instabilities in a Multi-Nozzle Can Combustor
,”
ASME
Paper No. GT2021-59098.10.1115/GT2021-59098
17.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
,
469
(
2151
), p.
20120535
.10.1098/rspa.2012.0535
18.
Bauerheim
,
M.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Symmetry Breaking of Azimuthal Thermo-Acoustic Modes in Annular Cavities: A Theoretical Study
,”
J. Fluid Mech.
,
760
, pp.
431
465
.10.1017/jfm.2014.578
19.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-Acoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3219
3227
.10.1016/j.proci.2014.05.053
20.
Humbert
,
S. C.
,
Moeck
,
J. P.
,
Orchini
,
A.
, and
Paschereit
,
C. O.
,
2021
, “
Effect of an Azimuthal Mean Flow on the Structure and Stability of Thermoacoustic Modes in an Annular Combustor Model With Electroacoustic Feedback
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061026
.10.1115/1.4048693
21.
Mensah
,
G. A.
,
Magri
,
L.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2019
, “
Effects of Asymmetry on Thermoacoustic Modes in Annular Combustors: A Higher-Order Perturbation Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041030
.10.1115/1.4041007
22.
Faure-Beaulieu
,
A.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2021
, “
Imperfect Symmetry of Real Annular Combustors: Beating Thermoacoustic Modes and Heteroclinic Orbits
,”
J. Fluid Mech.
,
925
, p. R1.10.1017/jfm.2021.649
23.
Indlekofer
,
T.
,
Faure-Beaulieu
,
A.
,
Noiray
,
N.
, and
Dawson
,
J.
,
2021
, “
The Effect of Dynamic Operating Conditions on the Thermoacoustic Response of Hydrogen Rich Flames in an Annular Combustor
,”
Combust. Flame
,
223
, pp.
284
294
.10.1016/j.combustflame.2020.10.013
24.
Ahn
,
B.
, Indlekofer, T., Dawson, J., and Worth, N.,
2021
, “
Transient Thermoacoustic Responses of Methane/Hydrogen Flames in a Pressurized Annular Combustor
,”
ASME
Paper No. GT2021-58777.10.1115/GT2021-58777
25.
Fang
,
Y.
,
Yang
,
Y.
,
Hu
,
K.
,
Wang
,
G.
,
Li
,
J.
, and
Zheng
,
Y.
,
2021
, “
Experimental Study on Self-Excited Thermoacoustic Instabilities and Intermittent Switching of Azimuthal and Longitudinal Modes in an Annular Combustor
,”
Phys. Fluids
,
33
(
8
), p.
084104
.10.1063/5.0059315
26.
Faure-Beaulieu
,
A.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Noiray
,
N.
,
2021
, “
Experiments and Low-Order Modelling of Intermittent Transitions Between Clockwise and Anticlockwise Spinning Thermoacoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5943
5951
.10.1016/j.proci.2020.05.008
27.
Kim
,
J.
,
John
,
T.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B.
,
Acharya
,
V.
,
Isono
,
M.
,
Saito
,
T.
, and
Lieuwen
,
T.
,
2022
, “
Nonlinear Dynamics of Combustor Azimuthal Modes: Experiments and Modeling
,”
Combust. Flame
,
238
, p.
111931
.10.1016/j.combustflame.2021.111931
28.
Mazur
,
M.
,
Kwah
,
Y. H.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
Self-Excited Longitudinal and Azimuthal Modes in a Pressurised Annular Combustor
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5997
6004
.10.1016/j.proci.2020.05.033
29.
Chen
,
Z. X.
, Swaminathan, N., Mazur, M., Worth, N. A., Zhang, G., and Li, L.,
2021
, “
Large Eddy Simulation and Low-Order Modelling of Azimuthal Thermoacoustic Instability in a Gas Turbine Model Annular Combustor
,” arXiv preprint
arXiv:2111.00731
.https://arxiv.org/abs/2111.00731
30.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
31.
Ye
,
C.
, Wang, G., Fang, Y., Ma, C., Zhong, L., and Moreau, S.,
2018
, “
Ignition Dynamics in an Annular Combustor With Gyratory Flow Motion
,”
ASME
Paper No. GT2018-76624.10.1115/GT2018-76624
32.
Wang
,
G.
,
Zhong
,
L.
,
Yang
,
Y.
,
Zheng
,
Y.
,
Fang
,
Y.
,
Xia
,
Y.
, and
Ye
,
C.
,
2021
, “
Experimental Investigation of the Ignition Dynamics in an Annular Premixed Combustor With Oblique-Injecting Swirling Burners
,”
Fuel
,
287
, p.
119494
.10.1016/j.fuel.2020.119494
33.
Zhong
,
L.
,
Yang
,
Y.
,
Jin
,
T.
,
Xia
,
Y.
,
Fang
,
Y.
,
Zheng
,
Y.
, and
Wang
,
G.
,
2021
, “
Local Flame and Flow Properties of Propagating Premixed Turbulent Flames During Light Round Process in a MICCA-Type Annular Combustor
,”
Combust. Flame
,
231
, p.
111494
.10.1016/j.combustflame.2021.111494
34.
Ghirardo
,
G.
, and
Bothien
,
M. R.
,
2018
, “
Quaternion Structure of Azimuthal Instabilities
,”
Phys. Rev. Fluids
,
3
(
11
), p.
113202
.10.1103/PhysRevFluids.3.113202
35.
Bourgouin
,
J.-F.
, Durox, D., Moeck, J. P., Schuller, T., and Candel, S.,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and Longitudinal Acoustic Modes
,”
ASME
Paper No. GT2013-95010.10.1115/GT2013-95010
36.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
37.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.10.1016/j.combustflame.2013.03.020
38.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.10.1016/j.combustflame.2017.05.021
39.
Nygård
,
H. T.
,
2021
, “
Experimental Measurement of Flame Describing Functions in an Azimuthally Forced Annular Combustor
,”
Doctoral thesis
, Norwegian University of Science and Technology, Trondheim, Norway.https://hdl.handle.net/11250/2755792
40.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
41.
Tu
,
J. H.
,
2013
, “Dynamic Mode Decomposition: Theory and Applications,”
Ph.D. thesis
,
Princeton University, Princeton, NJ
.https://www.proquest.com/openview/7a0ee5515e356a31e8eb3ebb3772414c/1?pqorigsite=gscholar&cbl=18750
42.
Antares Development Team
,
2012
, Antares Documentation Release 1.19.0 – 2022, accessed Aug. 23, 2022, https://cerfacs.fr/antares/
You do not currently have access to this content.