Abstract

This paper presents a Reynolds averaged Navier Stokes turbulent combustion model for CH4/H2/air mixtures which includes the effect of heat losses and flame stretch. This approach extends a previous model concept designed for methane/air mixtures and improves the prediction of flame stabilization when hydrogen is added to the fuel. Heat loss and stretch effects are modeled by tabulating the consumption speed of laminar counterflow flames in a fresh-to-burnt configuration with detailed chemistry at various heat loss and flame stretch values. These computed values are then introduced in the turbulent combustion model by means of a turbulent flame speed expression which is derived as a function of flame stretch, heat loss, and H2 addition. The model proposed in this paper is compared to existing models on experimental data of spherical expanding turbulent flame speeds. The performance of the model is further validated by comparing computational fluid dynamics predictions to experimental data of an atmospheric turbulent premixed bluff-body-stabilized flame fed with CH4/H2/air mixtures ranging from pure methane to pure hydrogen.

References

1.
ETN Global
,
2020
, “
Hydrogen Gas Turbines: The Path Towards a Zero-Carbon Gas Turbine
,” ETN Global, Brussels, Belgium, accessed Jan. 2020, https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf
2.
Ciani
,
A.
,
Tay-Wo-Chong
,
L.
,
Amato
,
A.
,
Bertolotto
,
E.
, and
Spataro
,
G.
,
2021
, “
Hydrogen Blending Into Ansaldo Energia AE94.3A Gas Turbine: High Pressure Tests, Field Experience and Modelling Considerations
,”
ASME
Paper No. GT2021-58650.10.1115/GT2021-58650
3.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
4.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
5.
Tay Wo Chong
,
L.
,
Komarek
,
T.
,
Zellhuber
,
M.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
Proceedings of the Fourth European Combustion Meeting
, Vienna, Austria, Apr. 14–17.https://www.tib.eu/en/search/id/tema:TEMA20100503549/Influence-of-strain-and-heat-loss-onflame-stabilization
6.
Tay Wo Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357.10.1115/GT2017-63357
7.
Tay Wo Chong
,
L.
,
Zellhuber
,
M.
,
Komarek
,
T.
,
Im
,
H. G.
, and
Polifke
,
W.
,
2016
, “
Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization
,”
Flow, Turbul. Combust.
,
97
(
1
), pp.
263
294
.10.1007/s10494-015-9679-0
8.
Muppala
,
S. P. R.
,
Aluri
,
N. K.
,
Dinkelacker
,
F.
, and
Leipertz
,
A.
,
2005
, “
Development of an Algebraic Reaction Rate Closure for the Numerical Calculation of Turbulent Premixed Methane, Ethylene, and Propane/Air Flames for Pressures Up to 1.0 MPa
,”
Combust. Flame
,
140
(
4
), pp.
257
266
.10.1016/j.combustflame.2004.11.005
9.
Fairweather
,
M.
,
Ormsby
,
M. P.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
2009
, “
Turbulent Burning Rates of Methane and Methane-Hydrogen Mixtures
,”
Combust. Flame
,
156
(
4
), pp.
780
790
.10.1016/j.combustflame.2009.02.001
10.
Jiang
,
L. J.
,
Shy
,
S. S.
,
Li
,
W. Y.
,
Huang
,
H. M.
, and
Nguyen
,
M. T.
,
2016
, “
High-Temperature, High-Pressure Burning Velocities of Expanding Turbulent Premixed Flames and Their Comparison With Bunsen-Type Flames
,”
Combust. Flame
,
172
, pp.
173
182
.10.1016/j.combustflame.2016.07.021
11.
Nguyen
,
M. T.
,
Yu
,
D. W.
, and
Shy
,
S. S.
,
2019
, “
General Correlations of High Pressure Turbulent Burning Velocities With the Consideration of Lewis Number Effect
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2391
2398
.10.1016/j.proci.2018.08.049
12.
Cai
,
X.
,
Wang
,
J.
,
Bian
,
Z.
,
Zhao
,
H.
,
Zhang
,
M.
, and
Huang
,
Z.
,
2020
, “
Self-Similar Propagation and Turbulent Burning Velocity of CH4/H2/Air Expanding Flames: Effect of Lewis Number
,”
Combust. Flame
,
212
, pp.
1
12
.10.1016/j.combustflame.2019.10.019
13.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.3.0
,” Cantera, accessed Aug. 23, 2021, https://www.cantera.org
14.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2021
, “
GRI-Mech 3.0
,” GRI-Mech, accessed Aug. 23, 2021, http://combustion.berkeley.edu/gri-mech/version30/text30.html
15.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Guthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
16.
Ji
,
C.
,
Wang
,
D.
,
Yang
,
J.
, and
Wang
,
S.
,
2017
, “
A Comprehensive Study of Light Hydrocarbon Mechanisms Performance in Predicting Methane/Hydrogen/Air Laminar Burning Velocities
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17260
17274
.10.1016/j.ijhydene.2017.05.203
17.
Mantel
,
T.
, and
Samaniego
,
J. M.
,
1999
, “
Fundamental Mechanisms in Premixed Turbulent Flame Propagation Via Vortex-Flame Interactions Part II: Numerical Simulation
,”
Combust. Flame
,
118
(
4
), pp.
557
582
.10.1016/S0010-2180(99)00019-X
18.
Bradley
,
D.
,
Gaskell
,
P. H.
,
Sedaghat
,
A.
, and
Gu
,
X. J.
,
2003
, “
Generation of PDFS for Flame Curvature and for Flame Stretch Rate in Premixed Turbulent Combustion
,”
Combust. Flame
,
135
(
4
), pp.
503
523
.10.1016/S0010-2180(03)00181-0
19.
Mastorakos
,
E.
,
Taylor
,
A. M. K. P.
, and
Whitelaw
,
J. H.
,
1995
, “
Extinction of Turbulent Counterflow Flames With Reactants Diluted by Hot Products
,”
Combust. Flame
,
102
(
1–2
), pp.
101
114
.10.1016/0010-2180(94)00252-N
20.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Geng
,
W.
,
Zoller
,
B. T.
, and
Magni
,
F.
,
2016
, “
Impact of Flame Stretch and Heat Loss on Heat Release Distributions in Gas Turbine Combustors: Model Comparison and Validation
,”
ASME
Paper No. GT2016-57625.10.1115/GT2016-57625
22.
Nassini
,
P. C.
,
Pampaloni
,
D.
, and
Andreini
,
A.
,
2019
, “
Inclusion of Flame Stretch and Heat Loss in LES Combustion Model
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020119
.10.1063/1.5138852
23.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.10.1115/1.2818178
24.
Dinkelacker
,
F.
,
Manickam
,
B.
, and
Muppala
,
S. P. R.
,
2011
, “
Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames With an Effective Lewis Number Approach
,”
Combust. Flame
,
158
(
9
), pp.
1742
1749
.10.1016/j.combustflame.2010.12.003
25.
Muppala
,
S. P. R.
,
Manickam
,
B.
, and
Dinkelacker
,
F.
,
2015
, “
A Comparative Study of Different Reaction Models for Turbulent Methane/Hydrogen/Air Combustion
,”
J. Therm. Eng.
,
1
(
5
), pp.
367
380
.10.18186/jte.60394
26.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.10.1016/S0360-1285(01)00007-7
27.
Bell
,
J. B.
,
Cheng
,
R. K.
,
Day
,
M. S.
, and
Shepherd
,
I. G.
,
2007
, “
Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1309
1317
.10.1016/j.proci.2006.07.216
28.
Zimont
,
V. L.
,
1979
, “
Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Numbers
,”
Combust., Explos. Shock Waves
,
15
(
3
), pp.
305
311
.10.1007/BF00785062
29.
Zimont
,
V. L.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
179
186
.10.1016/S0894-1777(99)00069-2
30.
Veynante
,
D.
,
Piana
,
J.
,
Duclos
,
J. M.
, and
Martel
,
C.
,
1996
, “
Experimental Analysis of Flame Surface Density Models for Premixed Turbulent Combustion
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
413
420
.10.1016/S0082-0784(96)80243-8
31.
Meneveau
,
C.
, and
Poinsot
,
T.
,
1991
, “
Stretching and Quenching of Flamelets in Premixed Turbulent Combustion
,”
Combust. Flame
,
86
(
4
), pp.
311
332
.10.1016/0010-2180(91)90126-V
32.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed.,
Bordeaux, France
.
33.
Duclos
,
J. M.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
1993
, “
A Comparison of Flamelet Models for Premixed Turbulent Combustion
,”
Combust. Flame
,
95
(
1–2
), pp.
101
117
.10.1016/0010-2180(93)90055-8
34.
Bougrine
,
S.
,
Richard
,
S.
,
Colin
,
O.
, and
Veynante
,
D.
,
2014
, “
Fuel Composition Effects on Flame Stretch in Turbulent Premixed Combustion: Numerical Analysis of Flame-Vortex Interaction and Formulation of a New Efficiency Function
,”
Flow, Turbul. Combust.
,
93
, pp.
251
289
.10.1007/s10494-014-9546-4
35.
Sergeev
,
O. A.
,
Shashkov
,
A. G.
, and
Umanskii
,
A. S.
,
1982
, “
Thermophysical Properties of Quartz Glass
,”
J. Eng. Phys.
,
43
(
6
), pp.
1375
1383
.10.1007/BF00824797
36.
Hemingway
,
B. S.
,
1987
, “
Quartz: Heat Capacities From 340 to 1000 K and Revised Values for the Thermodynamic Properties
,”
Am. Miner.
,
72
(
3–4
), pp.
273
279
.https://rruff.info/doclib/am/vol72/AM72_273.pdf
37.
Agazhanov
,
A. S.
,
Samoshkin
,
D. A.
, and
Kozlovskii
,
Y. M.
,
2019
, “
Thermophysical Properties of Inconel 718 Alloy
,”
J. Phys.: Conf. Ser.
,
1382
, p.
012175
.10.1088/1742-6596/1382/1/012175
38.
Popiel
,
C. O.
,
2008
, “
Free Convection Heat Transfer From Vertical Slender Cylinders: A Review
,”
Heat Transfer Eng.
,
29
(
6
), pp.
521
536
.10.1080/01457630801891557
39.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1 - C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.10.1002/kin.20802
You do not currently have access to this content.