Abstract

This paper summarizes the development of a large-eddy simulation (LES)-based approach for the prediction of CO emission in an industrial gas turbine combustor. Since the operating point of the modern combustors is really close to the extinction limit, the availability of a tool able to detect the onset of high-CO production can be useful for the proper definition of the combustion chamber air split or to introduce design improvements for the premixer itself. The accurate prediction of CO cannot rely on the flamelet assumption, representing the fundament of the modern combustion models. Consequently, in this work, the extended turbulent flame speed closure (ETFSC) of the standard flamelet generated manifold (FGM) model is employed to consider the effect of the heat loss and the strain rate on the flame brush. Moreover, a customized CO-Damköhler number is introduced to decouple the in-flame CO production region from the postflame contribution where the oxidation takes place. A fully premixed burner working at representative values of pressure and flame temperature of an annular combustor is selected for the validation phase of the process. The comparison against the experimental data shows that the process is not only able to capture the trend but also to predict CO in a quantitative manner. In particular, the interaction between the flame and the air fluxes at some critical sections of the combustor, leading the CO emission from the equilibrium value to the super-equilibrium, has been correctly reproduced.

References

1.
Romano
,
S.
,
Cerutti
,
M.
,
Riccio
,
G.
,
Romano
,
C.
, and
Andreini
,
A.
,
2019
, “
Effect of Natural Gas Composition on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
114501
.10.1115/1.4044870
2.
Romano
,
S.
,
Meloni
,
R.
,
Ricco
,
G.
,
Andreini
,
A.
, and
Nassini
,
P. C.
,
2020
, “
Modeling of Natural Gas Composition Effect on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2020-14575.10.1115/GT2020-14575
3.
Hollon
,
B.
,
Steinthorsson
,
E.
,
Mansour
,
A.
,
McDonell
,
V.
, and
Lee
,
H.
,
2011
, “
Ultra-Low Emission Hydrogen/Syngas Combustion With a 1.3 MW Injector Using a Micro-Mixing Lean-Premix System
,”
ASME
Paper No. GT2011-45929.10.1115/GT2011-45929
4.
Chen
,
W.
,
McMahan
,
K. W.
,
Boardman
,
G. A.
, and
Brown
,
J. D.
,
2012
, “
Micro-Mixer Nozzle
,” US Patent US9360220B2.
5.
Meloni
,
R.
,
Ceccherini
,
G.
,
Michelassi
,
V.
, and
Riccio
,
G.
,
2019
, “
Analysis of the Self-Excited Dynamics of a Heavy-Duty Annular Combustion Chamber by Large-Eddy Simulation
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p. 111016.10.1115/1.4044929
6.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbine
,”
Int. Symp. Combust.
,
27
(
Issue 2
).
7.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Geng
,
W.
, and
Magni
,
F.
,
2016
, “
Flamelet Generated Manifolds for Partially-Premixed, Highly-Stretched and Non-Adiabatic Combustion in Gas Turbines
,”
AIAA
Paper No. AIAA 2016-2120.10.2514/6.2016-2120
8.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Modeling of CO-Emission for Gas Turbines Combustors Operating at Part-Load Conditions
,”
J. Global Power Propul. Society
,
2
, p.
C3N5OA
.10.22261/JGPPS.C3N5OA
9.
Wegner
,
B.
,
Gruschka
,
U.
,
Krebs
,
W.
,
Egorov
,
Y.
,
Forkel
,
H.
,
Ferreira
,
J.
, and
Aschmoneit
,
K.
,
2011
, “
CFD Prediction of Part Load CO Emissions Using a Two-Timescale Combustion Model
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071502
.10.1115/1.4002021
10.
Yadav
,
R.
,
Shaoping
,
L.
, and
Meeks
,
E.
,
2018
, “
A Scale Separation Method for Pollutant Prediction in Turbulent Flames Using Transported Scalars With Flamelet Generated Manifold (FGM) Method
,”
ASME
Paper No. GT2018-77169.10.1115/GT2018-77169
11.
Zimont
,
V. L.
, and
Lipatnikov
,
A. N.
,
1995
, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
,
14
(
7
), pp.
993
1025
.https://www.researchgate.net/publication/312978033_A_numerical_model_of_premixed_turbulent_combustion_of_gases
12.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computation Model for Premixed Turbulent Combustion at High Reynolds Numbers
,”
ASME J. Gas Turbines Power
,
120
(
3
), pp.
526
532
.10.1115/1.2818178
13.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Lenz
,
M. Z.
,
Hirsch
,
J.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
Proceedings of the Fourth European Combustion Meeting
, Vienna, Austria, Apr. 14–17, pp.
1
6
.https://www.researchgate.net/publication/228521385_Influence_of_strain_and_heat_loss_on_flame_stabilization_in_a_non-adiabatic_combustor
14.
Tay-Wo-Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357.10.1115/GT2017-63357
15.
Oijen
,
J. A. V.
, and
Goey
,
L. P. H. D.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
16.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2002
, “
Modelling of Premixed Counterflow Flames Using the Flamelet Generated Manifold Method
,”
Combust. Theory Modell.
,
6
(
3
), pp.
463
478
.10.1088/1364-7830/6/3/305
17.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Andreini
,
A.
, and
Meloni
,
R.
,
2019
, “
Large Eddy Simulation of Lean Blow-Off in a Premixed Swirl Stabilized Flame
,”
ASME
Paper No. GT2009-90856.10.1115/GT2009-90856
18.
Caltech
,
2009
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Caltech, Pasadena, CA.
19.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
, Jr.,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2021
, “Gri-Mech,” accessed Aug. 24, 2021, http://combustion.berkeley.edu/gri-mech/
20.
Bradley
,
D.
,
Gaskell
,
P. H.
,
Sedaghat
,
A.
, and
Gu
,
X. J.
,
2003
, “
Generation of PDFS for Flame Curvature and for Flame Stretch Rate in Premixed Turbulent Combustion
,”
Combust. Flame
,
135
(
4
), pp.
503
523
.10.1016/S0010-2180(03)00181-0
21.
Meneveau
,
C.
, and
Poinsot
,
T.
,
1991
, “
Stretching and Quenching of Flamelets in Premixed Turbulent Combustion
,”
Combust. Flame
,
86
(
4
), pp.
311
332
.10.1016/0010-2180(91)90126-V
22.
ANSYS,
2013
,
Fluent Theory Guide, Release 15.0
,
ANSYS
,
Canonsburg, PA
.
23.
Germano
,
M.
,
Pimelic
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1996
, “
Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Summer Workshop, Center for Turbulence Research
,
Stanford, CA
, Paper No. N92-30649.
24.
Meloni
,
R.
,
Andreini
,
A.
, and
Nassini
,
P. C.
, “
A Novel LES-Based Process for NOx Emission Assessment in a Premixed Swirl Stabilized Combustion System
,”
ASME
Paper No. GT2021-59215.10.1115/GT2021-59215
25.
Pope
,
S. B.
,
2011
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.