Abstract

We present an efficient Monte Carlo-based probabilistic fracture mechanics simulation implementation for heterogeneous high-performance computing (HPC) architectures including central processing units (CPUs) and graphics processing units (GPUs). The specific application focuses on large heavy-duty gas turbine rotor components for the energy sector. A reliable probabilistic risk quantification requires the simulation of millions to billions of Monte Carlo (MC) samples. We apply a modified Runge–Kutta algorithm in order to solve numerically the fatigue crack growth for this large number of cracks for varying initial crack sizes, locations, material, and service conditions. This compute intensive simulation has already been demonstrated to perform efficiently and scalable on parallel and distributed HPC architectures including hundreds of CPUs utilizing the message passing interface (MPI) paradigm. In this work, we go a step further and include GPUs in our parallelization strategy. We develop a load distribution scheme to share one or more GPUs on compute nodes distributed over a network. We detail technical challenges and solution strategies in performing the simulations on GPUs efficiently. We show that the key computation of the modified Runge–Kutta integration step speeds up over two orders of magnitude on a typical GPU compared to a single threaded CPU. This is supported by our use of GPU textures for efficient interpolation of multidimensional tables utilized in the implementation. We demonstrate weak and strong scaling of our GPU implementation, i.e., that we can efficiently utilize a large number of GPUs/CPUs in order to solve for more MC samples, or reduce the computational turn-around time, respectively. On seven different GPUs spanning four generations, the presented probabilistic fracture mechanics simulation tool ProbFM achieves a speed-up ranging from 16.4× to 47.4× compared to single threaded CPU implementation.

References

1.
South West Research Institute,
2012
,
DARWIN 7.1 Users' Manual
, 7th ed.,
South West Research Institute
,
San Antonio, TX
.
2.
Enright
,
M. P.
, and
McClung
,
R. C.
,
2011
, “
A Probabilistic Framework for Gas Turbine Engine Materials With Multiple Types of Anomalies
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082502
.10.1115/1.4002675
3.
McClung
,
R. C.
,
Lee
,
Y.-D.
,
Enright
,
M. P.
, and
Liang
,
W.
,
2014
, “
New Methods for Automated Fatigue Crack Growth and Reliability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062101
.10.1115/1.4026140
4.
Enright
,
M. P.
,
Moody
,
J. P.
, and
Sobotka
,
J. C.
,
2016
, “
Optimal Automated Fracture Risk Assessment of 3D Gas Turbine Engine Components
,”
ASME
Paper No. GT2016-58091.10.1115/GT2016-58091
5.
Metropolis
,
N.
,
1987
, “
The Beginning of the Monte Carlo Method
,”
Los Alamos Sci.
,
15
(
584
), pp.
125
130
.https://library.lanl.gov/cgi-bin/getfile?00326866.pdf
6.
Kadau
,
K.
,
Gravett
,
P. W.
, and
Amann
,
C.
,
2018
, “
Probabilistic Fracture Mechanics for Heavy-Duty Gas Turbine Rotor Forgings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062503
.10.1115/1.4038524
7.
Amann
,
C.
,
Kadau
,
K.
, and
Gumbsch
,
P.
,
2018
, “
On the Transferability of Probabilistic Fracture Mechanics Results for Scaled 50 HZ and 60 HZ Heavy Duty Gas Turbine Rotor Disks
,”
ASME
Paper No. GT2018–75561.10.1115/GT2018-75561
8.
Gropp
,
W.
,
Lusk
,
E.
, and
Skjellum
,
A.
,
2014
,
Using MPI: Portable Parallel Programming With the Message-Passing Interface
,
The MIT Press
, Cambridge, MA.
9.
Wilt
,
N.
,
2013
, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Pearson Education, Inc., Upper Saddle River, NJ.
10.
Amann
,
C.
, and
Kadau
,
K.
,
2016
, “
Numerically Efficient Modified Runge-Kutta Solver for Fatigue Crack Growth Analysis
,”
Eng. Fract. Mech.
,
161
, pp.
55
62
.10.1016/j.engfracmech.2016.03.021
11.
Radaelli
,
F.
,
Kadau
,
K.
,
Amann
,
C.
, and
Gumbsch
,
P.
,
2019
, “
Probabilistic Fracture Mechanics Framework Including Crack Nucleation of Rotor Forging Flaws
,”
ASME
Paper No.
GT2019–90418
.10.1115/GT2019-90418
12.
Radaelli
,
F.
,
Amann
,
C.
,
Aydin
,
A.
,
Varfolomeev
,
I.
,
Gumbsch
,
P.
, and
Kadau
,
K.
,
2020
, “
A Probabilistic Model for Forging Flaw Crack Nucleation Processes
,”
ASME
Paper No.
GT2020–14606
.10.1115/GT2020-14606
13.
Engels
,
P.
,
Amann
,
C.
,
Schmitz
,
S.
, and
Kadau
,
K.
,
2020
, “
Probabilistic Fracture Mechanics for Mature Service Frame Rotors
,”
ASME
Paper no. GT2020–14608.10.1115/GT2020-14608
14.
Amann
,
C.
,
Gravett
,
P. W.
, and
Kadau
,
K.
,
2016
, “
Method and System for Probabilistic Fatigue Crack Life Estimation
,” US Patent 9,280,620 B2.
15.
Kadau
,
K.
,
Ross
,
C. W.
,
Patel
,
C. B.
, and
Amann
,
C.
,
2015
, “
Method for Analysis of 3D Features Using a 2D Probabilistic Analysis
,” US Patent application 14/314,159.
16.
The TOP500 project
, 1993–2021, “
Top 500 Supercomputer Statistics
,” Prometeus GmbH, Sinsheim, Germany, accessed Aug. 23, 2021, https://www.top500.org/
17.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics Fundamentals and Applications
,
CRC Press
, Boca Raton, FL.
18.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
19.
Runge
,
C.
,
1895
, “
Über Die Numerische Auflösung Von Differentialgleichungen
,”
Math. Ann.
,
46
(
2
), pp.
167
178
.10.1007/BF01446807
20.
Kutta
,
W.
,
1901
, “
Beitrag Zur Näherungsweisen Integration Totaler Differentialgleichungen
,”
Z. Math. Phys
,
46
, pp.
435
453
.
21.
The MPI Forum
, 1993–2021, “MPI Forum,” University of Tennessee, Knoxville, TN, accessed Aug. 23, 2021, https://www.mpi-forum.org/
22.
NVIDIA Corporation
, 2021, “
cuRAND
,” NVIDIA Corporation, Santa Clara, CA, accessed Aug. 23, 2021, https://docs.nvidia.com/cuda/curand/index.html
23.
Thomas
,
D.
,
2011
, “
The MWC64X Random Number Generator
,” Imperial College London, UK, accessed Aug. 23, 2021, http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html
You do not currently have access to this content.