Abstract

The periodic maintenance, repair, and overhaul (MRO) of turbine blades in thermal power plants are essential to maintain a stable power supply. During MRO, older and less-efficient power plants are put into operation, which results in wastage of additional fuels. Such a situation forces thermal power plants to work under off-design conditions. Moreover, such an operation accelerates blade deterioration, which may lead to sudden failure. Therefore, a method for avoiding unexpected failures needs to be developed. To detect the signs of machinery failures, the analysis of time-series data is required. However, data for various blade conditions must be collected from actual operating steam turbines. Further, obtaining abnormal or failure data is difficult. Thus, this paper proposes a classification approach to analyze big time-series data alternatively collected from numerical results. The time-series data from various normal and abnormal cases of actual intermediate-pressure steam-turbine operation were obtained through numerical simulation. Thereafter, useful features were extracted and classified using K-means clustering to judge whether the turbine is operating normally or abnormally. The experimental results indicate that the status of the blade can be appropriately classified. By checking data from real turbine blades using our classification results, the status of these blades can be estimated. Thus, this approach can help decide on the appropriate timing for MRO.

References

1.
Gregg, S. J., 2018, “Digitization and MRO at ASME Turbo Expo 2018,”
ASME Mechanical Engineering
, 140(3), pp. S51–S56.10.1115/1.2018-MAR-7
2.
Greis
,
J.
,
Gobrecht
,
E.
, and
Wendt
,
S.
,
2012
, “
Flexible and Economical Operation of Power Plants—25 Years of Expertise
,”
ASME
Paper No. GT2012-68716.10.1115/GT2012-68716
3.
Yoshida
,
Y.
,
Yoshida
,
T.
,
Enomoto
,
Y.
,
Osaki
,
N.
,
Nagahama
,
Y.
, and
Tsuge
,
Y.
,
2019
, “
Start-Up Optimization of Combined Cycle Power Plants: A Field Test in a Commercial Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031002
.10.1115/1.4041521
4.
Checcacci
,
D.
,
Cosi
,
L.
, and
Sah
,
S.
,
2011
, “
Rotor Life Prediction and Improvement for Steam Turbines Under Cyclic Operation
,”
ASME
Paper No. GT2011-45792.10.1115/GT2011-45792
5.
Saito
,
K.
,
Sakuma
,
A.
, and
Fukuda
,
M.
,
2006
, “
Recent Life Assessment Technology for Existing Steam Turbines
,”
ASME
Paper No. PWR2005-50345.10.1115/PWR2005-50345
6.
Loboda
,
I.
,
2010
,
Gas Turbine Condition Monitoring and Diagnostics
, Gas Turbines,
IntechOpen
, London, UK.
7.
Loboda
,
I.
,
2016
,
Neural Networks for Gas Turbine Diagnosis
, Artificial Neural Networks - Models and Applications,
IntechOpen
, London, UK.
8.
Goyal
,
V.
,
Xu
,
M.
, and
Kapat
,
J.
,
2019
, “
Use of Vector Autoregressive Model for Anomaly Detection in Utility Gas Turbines
,”
ASME
Paper No. GT2019-90995.10.1115/GT2019-90995
9.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2020
, “
Prediction of Gas Turbine Performance Using Machine Learning Methods
,”
ASME
Paper No. GT2020-15232.10.1115/GT2020-15232
10.
Li
,
S.
,
Zhu
,
H.
,
Zhu
,
M.
,
Zhao
,
G.
, and
Wei
,
X.
,
2020
, “
Combustion Tuning for a Gas Turbine Power Plant Using Data-Driven and Machine Learning Approach
,”
ASME
Paper No. GT2020-15788.10.1115/GT2020-15788
11.
Uemura
,
A.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
, and
Umezawa
,
S.
,
2019
, “
Effect of Blade Secular Change on Unsteady Flows in Middle Pressure First-Stage Steam Turbines
,”
ASME
Paper No. GT2019-90644.10.1115/GT2019-90644
12.
Uemura
,
A.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
,
Umezawa
,
S.
, and
Ohmori
,
S.
,
2020
, “
Simulation of Unsteady Flows Through Three-Stage Middle Pressure Steam Turbine in Operation
,”
Mech. Eng. J.
,
7
(
4
), p.
20
00068
.
13.
Yamamoto
,
S.
,
Uemura
,
A.
,
Miyazawa
,
H.
,
Furusawa
,
T.
,
Yonezawa
,
K.
,
Umezawa
,
S.
,
Ohmori
,
S.
, and
Suzuki
,
T.
,
2020
, “
A Numerical and Analytical Coupling Method for Predicting the Performance of Intermediate-Pressure Steam Turbines in Operation
,”
Energy
,
198
, p.
117380
. 10.1016/j.energy.2020.117380
14.
Miyazawa
,
H.
,
Uemura
,
A.
,
Furusawa
,
T.
,
Yamamoto
,
S.
,
Yonezawa
,
K.
,
Umezawa
,
S.
,
Ohmori
,
S.
, and
Suzuki
,
T.
,
2020
, “
Unsteady Flow Simulation Through Stator-Rotor Blade Rows in Intermediate-Pressure Steam Turbines With Cutback Blades
,”
ASME
Paper No. GT2020-14937.10.1115/GT2020-14937
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
16.
Hougi
,
Y.
,
Komatsu
,
K.
,
Watanabe
,
O.
,
Sato
,
M.
, and
Kobayashi
,
H.
,
2020
, “
A Hierarchical Wavefront Method for LU-SGS on Modern Multi-Core Vector Processors
,”
Proceedings of the 32nd International Conference on Parallel Computational Fluid Dynamics
, Nice, France, May 11–13, pp.
1
4
.https://parcfd2020.sciencesconf.org/316921/document
17.
Watanabe
,
O.
,
Hougi
,
Y.
,
Komatsu
,
K.
,
Sato
,
M.
,
Musa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Optimizing Memory Layout of Hyperplane Ordering for Vector Supercomputer
,” IEEE/ACM Workshop on Memory Centric High Performance Computing (
MCHPC
), Denver, CO, Nov. 18, pp.
25
32
.10.1109/MCHPC49590.2019.00011
18.
Komatsu
,
K.
,
Momose
,
S.
,
Isobe
,
Y.
,
Watanabe
,
O.
,
Musa
,
A.
,
Yokokawa
,
M.
,
Aoyama
,
T.
,
Sato
,
M.
, and
Kobayashi
,
H.
,
2018
, “
Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA
,”
SC18: International Conference for High Performance Computing, Networking, Storage and Analysis
, Dallas, TX, Nov. 11–16, pp.
685
696
.10.1109/SC.2018.00057
19.
Egawa
,
R.
,
Komatsu
,
K.
, and
Takizawa
,
H.
,
2017
, “
Designing an Open Database of System-Aware Code Optimizations
,” Fifth International Symposium on Computing and Networking (
CANDAR
), Aomori, Japan, Nov. 19–22, pp.
369
374
.10.1109/CANDAR.2017.102
20.
Komatsu
,
K.
,
Egawa
,
R.
,
Takizawa
,
H.
,
Soga
,
T.
,
Musa
,
A.
, and
Kobayashi
,
H.
,
2014
, “
Exploring System Architectures for Next-Generation CFD Simulations in the Postpeta-Scale Era
,”
J. Fluid Sci. Technol.
,
9
(
5
), p.
JFST0073
.10.1299/jfst.2014jfst0073
21.
Komatsu
,
K.
,
Soga
,
T.
,
Egawa
,
R.
,
Takizawa
,
H.
, and
Kobayashi
,
2013
, “
Performance Evaluation of a Next-Generation CFD on Various Supercomputing Systems
,”
Sustained Simulation Performance 2012
, Springer, Berlin, pp.
123
132
.10.1007/978-3-642-32454-3_11
22.
Yonezawa
,
K.
,
Kagayama
,
M.
,
Takayasu
,
M.
,
Nakai
,
G.
,
Sugiyama
,
K.
,
Sugita
,
K.
, and
Umezawa
,
S.
,
2019
, “
Degradation of Aerodynamic Performance of an Intermediate-Pressure Steam Turbine Due to Erosion of Nozzle Guide Vanes and Rotor Blades
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
012602
.10.1115/1.4040566
23.
Kumar
,
V.
,
Bass
,
G.
,
Tomlin
,
C.
, and
Dulny
,
J.
,
2018
, “
Quantum Annealing for Combinatorial Clustering
,”
Quant. Inf. Process.
,
17
(
2
), p.
39
.10.1007/s11128-017-1809-2
24.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer Science & Business Media
, New York.
25.
Murtagh
,
F.
,
1983
, “
A Survey of Recent Advances in Hierarchical Clustering Algorithms
,”
Comput. J.
,
26
(
4
), pp.
354
359
.10.1093/comjnl/26.4.354
26.
Sculley
,
D.
,
2010
, “
Web-Scale k-Means Clustering
,”
Proceedings of the 19th International Conference on World Wide Web
, Raleigh, NC, Apr. 26–30, pp.
1177
1178
.10.1145/1772690.1772862
27.
MacQueen
,
J.
,
1967
, “
Some Methods for Classification and Analysis of Multivariate Observations
,”
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, Vol.
1
, pp.
281
297
.https://projecteuclid.org/proceedings/berkeley-symposium-on-mathematical-statistics-andprobability/proceedings-of-the-fifth-berkeley-symposium-on-mathematical-statisticsand/Chapter/Some-methods-for-classification-and-analysis-of-multivariateobservations/bsmsp/1200512992
28.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
You do not currently have access to this content.