Abstract

Validating simulation results of vibrating turbine blades relies on measurements of realistic or academic cyclic structures on special test rigs. In real operation the blades are excited mainly by aerodynamic forces. For measurements of blade vibration on special test rigs, the excitation should be well known. It is desirable to use excitation spectra that consist of only a few engine order excitations. Especially for nonlinear systems, unwanted excitation orders can possibly lead to nonlinear effects which may interfere with the measurement. To separate different engine orders, an innovative electromagnetic excitation device was developed at the institution to overcome the aforementioned problems. The excitation force spectrum is controlled by a variable air gap over the circumference between device and blade. Any desired engine order excitation can be realized. Additionally, by varying the devices coil current in a harmonic fashion, frequency sweeps at constant speed can be performed. In this manuscript, an extensive study of the excitation force spectrum of the device is conducted. Therefore, theoretical investigations of the expectable spectrum are given under simultaneous variation of air gap geometry and excitation current. These predictions are then validated by experiments featuring a small, academic bladed disk. The vibrations of the blades are measured. The device promises to create well predictable and controllable excitation force spectra which will improve the validation strategy in particular of nonlinear simulation tools for the prediction of turbine blade vibrations.

References

1.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
2.
Sever
,
I. A.
,
Petrov
,
E. E.
, and
Ewins
,
D. J.
,
2008
, “
Experimental and Numerical Investigation of Rotating Bladed Disk Forced Response Using Under-Platform Friction Dampers
,”
ASME J. Eng. Gas Turbines Power,
130
(
4
), p.
042503
.10.1115/1.2903845
3.
Di Maio
,
D.
, and
Ewins
,
D.
,
2012
, “
Experimental Measurements of Out-of-Plane Vibrations of a Simple Blisk Design Using Blade Tip Timing and Scanning LDV Measurement Methods
,”
Mech. Syst. Signal Process.
,
28
, pp.
517
527
.10.1016/j.ymssp.2011.09.018
4.
Firrone
,
C. M.
, and
Berruti
,
T.
,
2012
, “
An Electromagnetic System for the Non-Contact Excitation of Bladed Disks
,”
Exp. Mech.
,
52
(
5
), pp.
447
459
.10.1007/s11340-011-9504-1
5.
Jones
,
K. W.
, and
Cross
,
C. J.
,
2003
, “
Traveling Wave Excitation System for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.10.2514/2.6089
6.
Hoffmann
,
T.
,
Jahn
,
M.
,
Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Modal Excitation of Circular Rotating Structures Using an Innovative Electromagnetic Device
,”
Topics in Modal Analysis & Testing
,
M. L.
Mains
and
B. J.
Dilworth
, eds., Vol.
8
,
Springer International Publishing
,
Cham, Switzerland
, pp.
153
162
.10.1007/978-3-030-12684-1_15
7.
Schwarzendahl
,
S. M.
,
2016
, “
Schwingungsdämpfung Zyklisch-Symmetrischer Strukturen Durch Beschaltete Piezowandler
,”
Berichte Aus Dem IDS
,
Leibniz Universität Hannover
,
Hannover, Germany
.
8.
Freund
,
O.
,
Bartelt
,
M.
,
Mittelbach
,
M.
,
Montgomery
,
M.
,
Vogt
,
D. M.
, and
Seume
,
J. R.
,
2013
, “
Impact of the Flow on an Acoustic Excitation System for Aeroelastic Studies
,”
ASME J. Turbomach.
,
135
(
3
), p.
031033
.10.1115/1.4007511
9.
Grant
,
J. J.
,
Cosmo
,
M. R.
,
Hou
,
J. F.
,
Smith
,
E. O.
, and
de Baar
,
J. H. S.
,
2018
, “
An Acoustic Travelling Wave System for the Analysis of Blisk Mistuning
,”
ASME
Paper No. GT2018-75666.10.1115/GT2018-75666
10.
Schlesier
,
K.-D.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2018
, “
Investigations on Transient Amplitude Amplification by Applying Intentional Mistuning
,”
ASME
Paper No. GT2018-75514.10.1115/GT2018-75514
11.
Provenza
,
A. J.
, and
Duffy
,
K. P.
,
2010
, “
Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contact Optical Measurements
,”
ASME
Paper No. GT2010-22093.10.1115/GT2010-22093
12.
Siewert
,
C.
,
Sieverding
,
F.
,
McDonald
,
W. J.
,
Kumar
,
M.
, and
McCracken
,
J. R.
,
2017
, “
Development of a Last Stage Blade Row Coupled by Damping Elements: Numerical Assessment of Its Vibrational Behavior and Its Experimental Validation During Spin Pit Measurements
,”
ASME
Paper No. GT2017-63630.10.1115/GT2017-63630
13.
Hoffmann
,
T.
,
Jahn
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2017
, “
Ein Elektromagnetischer Mechanismus Zur Anregung Von Schaufelschwingungen
,” DE Patent No. 102,017,114,153.
14.
Zucca
,
S.
,
Di Maio
,
D.
, and
Ewins
,
D.
,
2012
, “
Measuring the Performance of Underplatform Dampers for Turbine Blades by Rotating Laser Doppler Vibrometer
,”
Mech. Syst. Signal Process.
,
32
, pp.
269
281
.10.1016/j.ymssp.2012.05.011
15.
Leissa
,
A. W.
,
1969
, “
Vibration of Plates
,” Ohio State University, Columbus, OH, Report No.
NASA SP-160
. http://acoustics.ae.illinois.edu/pdfs/Vibration%20of%20Plates%20(Leissa,%20NASA%20SP-160).pdf
16.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
17.
Panning
,
L.
, “
Auslegung von Reibelementen zur Schwingungsdämpfung von Turbinenschaufeln,” Ph.D. thesis,
Leibniz Universität Hannover, Hannover, Germany
.
18.
Jöcker
,
M.
,
2002
, “
Numerical Investigation of the Aerodynamic Vibration Excitation of High-Pressure Turbine Rotors
,”
Ph.D. thesis
, Tekniska högskolan i Stockholm, Stockholm, Sweden. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A9213&dswid=-3560
19.
Hoffmann
,
T.
,
Panning-Von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Measured and Simulated Forced Response of a Rotating Turbine Disk With Asymmetric and Cylindrical Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051002
.10.1115/1.4045337
20.
Rohloff
,
B.
,
2013
, “
Calibration of an Optomechanical Image Derotator With 6-Axes Parallel Kinematics Using Image Processing Algorithms
,” Institute of Measurement and Automatic Control, Hannover, Germany, Report No. 4.
21.
Rohloff
,
B.
,
Pape
,
C.
, and
Reithmeier
,
E.
,
2014
, “
Automated Calibration of an Optomechanical Derotator Using 6-Axes Parallel Kinematics and Industrial Image Processing Algorithms
,”
Opt. Eng.
,
53
(
10
), p.
104101
.10.1117/1.OE.53.10.104101
You do not currently have access to this content.