Abstract

The fuel-cooled oil cooler (FCOC) in the lubrication circuit plays a critical role in the aero gas-turbine engine's aerothermal management. However, the low temperature of the operating environment can congeal the oil and reduce the FCOC efficiency. The oil bypass valve (OBV) installed on the FCOC prevents pressure loss. Its failure may cause overheating, requiring preemptive performance prediction. Experimental and numerical analyses were used to evaluate the cooler's decongealing performance under typical boundary conditions of pressure and temperature, OBV configurations, and rerouting of feed oil and fuel flow paths. The temporal variation of oil and fuel mass flow rates, temperature, and pressure of the feed oil and fuel provided an insight into the decongealing process and duration. The experimental data were used to develop a one-dimensional (1D) flow and thermal network analysis model based on the effectiveness (ε)-number of thermal units (NTU) method to predict the transient oil decongealing performance of the FCOC. The customized commercial code predicted the decongealing phenomena using empirical correlations with property correction schemes, showing good agreement with the experiment. The findings revealed various ways to enhance the decongealing performance of the FCOC. The study results showed that the operating boundary conditions, OBV location and status, and flow arrangements affect decongealing behavior and time. The present numerical model provides results quickly and can effectively predict experimentally costly and complicated cases. The attempted estimates of steady heat rejection and detailed methodology could guide future studies and practical applications.

References

1.
Park
,
J.
,
Kholi
,
F. K.
,
Klingsporn
,
M.
,
Chetwynd-Chatwin
,
J.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2021
, “
An Improved Numerical Analysis of the Transient Oil De-Congealing Process in a Heat Exchanger Under Low Temperature Conditions
,”
J. Mech. Sci. Technol.
,
35
(
1
), pp.
391
406
.10.1007/s12206-020-1239-4
2.
Siim, K., and Maire, G.-Q., 2011, “
2050-Europe's Vision for Aviation
,” Advisory Council for Aeronautics Research in Europe, Publications Office of the European Union, Luxembourg.
3.
Maalouf
,
S.
,
Isikveren
,
A.
,
Dumoulin
,
P.
,
Tauveron
,
N.
, and
Cotereau
,
N.
,
2019
, “
High-Temperature Heat Pump for Aircraft Engine Oil Cooling
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
472
482
.10.2514/1.T5494
4.
Mucci
,
A.
,
Kholi
,
F. K.
,
Ha
,
M. Y.
,
Min
,
J. K.
,
Beecroft
,
P.
, and
Chetwynd-Chatwin
,
J.
,
2020
, “
Transient Performance Analysis of an Aero Gas Turbine Cooled Cooling Air Heat Exchanger
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111014
.10.1115/1.4048565
5.
Min
,
J. K.
,
Jeong
,
J. H.
,
Ha
,
M. Y.
, and
Kim
,
K. S.
,
2009
, “
High Temperature Heat Exchanger Studies for Applications to Gas Turbines
,”
Heat Mass Transfer
,
46
(
2
), pp.
175
186
.10.1007/s00231-009-0560-3
6.
Qin
,
J.
,
Zhang
,
S.
,
Bao
,
W.
,
Zhou
,
W.
, and
Yu
,
D.
,
2013
, “
Thermal Management Method of Fuel in Advanced Aeroengines
,”
Energy
,
49
, pp.
459
468
.10.1016/j.energy.2012.10.050
7.
Dickson
,
J.
,
1976
, “
Problems Associated With Cold Weather Operation of Gas Turbines
,”
ASME
Paper No. 76-GT-129.10.1115/76-GT-129
8.
Moon
,
C.
,
Seo
,
H.
,
Ha
,
M. Y.
,
Yoon
,
S. Y.
, and
Kim
,
K. C.
,
2019
, “
De-Icing of Fuel/Oil Heat Exchange Systems Via Fuel Flow Direction Switching Device
,”
Aerosp. Sci. Technol.
,
89
, pp.
77
88
.10.1016/j.ast.2019.03.047
9.
Caminez
,
H.
,
1934
, “
The Oil Cooling Problem in Aircraft Engines
,”
J. Aeronaut. Sci.
,
1
(
3
), pp.
131
134
.10.2514/8.34
10.
Coleman
,
K.
, and
Kosson
,
R.
,
1989
, “
Analytical Methods to Predict Liquid Congealing in Ram Air Heat Exchangers During Cold Operation
,”
SAE Trans.
,
98
(
1
), pp.
378
392
.http://www.jstor.org/stable/44471642
11.
Patton
,
R. E.
,
1976
, “
Gas Turbine Operation in Extreme Cold Climates
,”
ASME
Paper No. 76-GT-129.10.1115/76-GT-127
12.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2001
,
Gas Turbine Theory
,
Pearson Education
, London, UK, pp.
101
150
.
13.
Sousa
,
J.
,
Villafane
,
L.
, and
Paniagua
,
G.
,
2014
, “
Thermal Analysis and Modeling of Surface Heat Exchangers Operating in the Transonic Regime
,”
Energy
,
64
, pp.
961
969
.10.1016/j.energy.2013.11.032
14.
Roberts
,
A.
,
Brooks
,
R.
, and
Shipway
,
P.
,
2014
, “
Internal Combustion Engine Cold-Start Efficiency: A Review of the Problem, Causes and Potential Solutions
,”
Energy Convers. Manage.
,
82
, pp.
327
350
.10.1016/j.enconman.2014.03.002
15.
Hemmat Esfe
,
M.
,
Abbasian Arani
,
A. A.
,
Esfandeh
,
S.
, and
Afrand
,
M.
,
2019
, “
Proposing New Hybrid Nano-Engine Oil for Lubrication of Internal Combustion Engines: Preventing Cold Start Engine Damages and Saving Energy
,”
Energy
,
170
, pp.
228
238
.10.1016/j.energy.2018.12.127
16.
Battista
,
D. D.
, and
Cipollone
,
R.
,
2016
, “
Experimental and Numerical Assessment of Methods to Reduce Warm Up Time of Engine Lubricant Oil
,”
Appl. Energy
,
162
, pp.
570
580
.10.1016/j.apenergy.2015.10.127
17.
Streifinger
,
H.
,
1999
, “
Fuel/Oil System Thermal Management in Aircraft Turbine Engines
,”
RTO Meeting Proceedings
, Toulouse, France, May 11–15, pp.
11
12
.https://www.tib.eu/en/search/id/BLCP%3ACN029454648/Fuel-Oil-System-Thermal-Management-in-Aircraft/
18.
Kalia
,
S.
,
Ca
,
V.
, and
Hegde
,
S. M.
,
2016
, “
CFD Analysis of Turboprop Engine Oil Cooler Duct for Best Rate of Climb Condition
,”
IOP Conference Series: Materials Science and Engineering
, Bangalore, India, July 14–16, Vol. 149, p. 012196.https://iopscience.iop.org/article/10.1088/1757-899X/149/1/012196
19.
Hitzigrath
,
R. W.
,
1993
, “
Improving Aircraft Fuel-Thermal Management
,”
SAE
Paper No. 932086.10.4271/932086
20.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,” ISABE, Beijing, China, Sept. 2–7, Paper No.
2007-1120
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.6911&rep=rep1&type=pdf
21.
Reulet
,
P.
,
Donjat
,
D.
,
Divouron
,
E.
,
Radenac
,
E.
, and
Millan
,
P.
,
2009
, “
Infrared Thermography Analysis of the Transient Aerothermal Evolution in a Turbofan Core Compartment Model
,”
Quant. InfraRed Thermography J.
,
6
(
2
), pp.
225
248
.10.3166/qirt.6.225-248
22.
EastmanTM Turbo Oil 25 | TDS | Eastman Chemical Company
, (n.d.), “Technical Data Sheet Eastman™ Turbo Oil 25,” Eastman Chemical Company, Kingsport, TN, accessed Nov. 1, 2019, https://productcatalog.eastman.com/tds/ProdDatasheet.aspx?product=71094084#_ga=2.121839051.1571784123.1572538529-1792542673.1572538529
23.
Saltzman
,
D.
,
Bichnevicius
,
M.
,
Lynch
,
S.
,
Simpson
,
T. W.
,
Reutzel
,
E. W.
,
Dickman
,
C.
, and
Martukanitz
,
R.
,
2018
, “
Design and Evaluation of an Additively Manufactured Aircraft Heat Exchanger
,”
Appl. Therm. Eng.
,
138
, pp.
254
263
..10.1016/j.applthermaleng.2018.04.032
24.
Dhainje
,
U. C.
, and
Kamble
,
A. G.
,
2019
, “
Design Analysis and Performance Evaluation of Heat Pipe Embedded Oil Cooler With Enhanced Staggered Fins
,”
Int. J. Recent Technol. Eng.
,
8
(
2
), pp.
5598
5603
.10.35940/ijrte.B3700.078219
25.
Musto
,
M.
,
Bianco
,
N.
,
Rotondo
,
G.
,
Toscano
,
F.
, and
Pezzella
,
G.
,
2016
, “
A Simplified Methodology to Simulate a heat exchanger in an Aircraft's Oil Cooler by Means of a Porous Media Model
,”
Appl. Therm. Eng.
,
94
, pp.
836
845
.10.1016/j.applthermaleng.2015.10.147
26.
Google Patents,
(n.d.), “
A Method for Cooling the Fluid, and a Turbine Engine System
,” Google Patents, CN101338701B, accessed Oct. 26, 2019, https://patents.google.com/patent/CN101338701B/en
27.
Google Patents,
(n.d.), “
Fluid-Cooling Device for a Turbine Engine Propulsive Unit
,” Google Patents, EP2435680B1, accessed Oct. 26, 2019, https://patents.google.com/patent/EP2435680B1/en#patentCitations
28.
Google Patents,
(n.d.), “
Gas Turbine Heat Exchanger Operating Method and Device
,” Google Patents, JP2014034975A, accessed Oct. 26, 2019, https://patents.google.com/patent/JP2014034975A/en
29.
Mucci
,
A.
,
Kholi
,
F. K.
,
Ha
,
M. Y.
,
Min
,
J. K.
,
Beecroft
,
P. A.
,
Yoon
,
S. Y.
,
Yun
,
W. G.
, and
Sibilli
,
T.
,
2019
, “
Transient Regime Simulation From Idle to Maximum Take-Off Flight Conditions of Cooled Cooling Air Heat Exchanger for an Aero Gas Turbine Heat Management
,”
ASME
Paper No. GT2019-90701. 10.1115/GT2019-90701
30.
Žukauskas
,
A.
, Hartnett, J. P., T.F.B.T.-A., and Irvine, H. T.,
1972
, Heat Transfer From Tubes in Crossflow,
Advances in Heat Transfer
, Elsevier, Amsterdam, The Netherlands, Vol. 8, pp.
93
160
.10.1016/S0065-2717(08)70038-8
31.
Navarro
,
H. A.
, and
Cabezas-Gómez
,
L. C.
,
2007
, “
Effectiveness-NTU Computation With a Mathematical Model for Cross-Flow Heat Exchangers
,”
Braz. J. Chem. Eng.
,
24
(
4
), pp.
509
521
.10.1590/S0104-66322007000400005
32.
Gao
,
T.
,
Geer
,
J.
, and
Sammakia
,
B.
,
2015
, “
Development and Verification of Compact Transient Heat Exchanger Models Using Transient Effectiveness Methodologies
,”
Int. J. Heat Mass Transfer
,
87
, pp.
265
278
.10.1016/j.ijheatmasstransfer.2015.03.091
33.
GaoSammakia
,
T.
,
Geer
,
B.
,
David
,
J.
, and
Schmidt
,
M. R.
,
2014
, “
Experimentally Verified Transient Models of Data Center Crossflow Heat Exchangers
,”
ASME
Paper No. IMECE2014-36022.10.1115/IMECE2014-36022
34.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ, pp.
101
105
.
35.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
, Hoboken, NJ, pp.
97
104
.
36.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
, “
Compact Heat Exchangers
,” Online, pp.
85
95
.
37.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.10.1016/0894-1777(94)00096-Q
38.
Celata
,
G. P.
,
Morini
,
G. L.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
,
2006
, “
Using Viscous Heating to Determine the Friction Factor in Microchannels—An Experimental Validation
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
725
731
.10.1016/j.expthermflusci.2006.03.002
39.
Cai
,
H.
,
Su
,
L.
,
Liao
,
Y.
, and
Weng
,
Z.
,
2019
, “
Numerical and Experimental Study on the Influence of Top Bypass Flow on the Performance of Plate Fin Heat Exchanger
,”
Appl. Therm. Eng.
,
146
, pp.
356
363
.10.1016/j.applthermaleng.2018.10.007
You do not currently have access to this content.