Abstract

In support of efforts to develop improved models of turbulent spray behavior and combustion in diesel engines, experimental data and analysis must be obtained for guidance and validation. For Reynolds-averaged Navier–Stokes (RANS)-based Computational fluid dynamics (CFD) modeling approaches, representative ensemble average experimental results are important. For high-fidelity models such as large eddy simulations (LES)-based CFD, precise individual experimental results are desirable. However, making comparisons between a given experiment and LES is a challenge since local parameters cannot be directly compared. In this work, an optically accessible constant pressure flow rig (CPFR) is utilized to acquire diesel-like fuel injection and reaction behavior simultaneously with three optical diagnostic techniques: rainbow Schlieren deflectometry (RSD), OH* chemiluminescence (OH*), and two-color pyrometry (2CP). The CPFR allows a large number of repeated injection experiments to be performed for statistical analysis and convergence using ensemble-averaging techniques, while maintaining highly repeatable test conditions. Even for stable test conditions, variations in local turbulent fuel–air mixing introduce variability, which manifests as significant differences in OH* and 2CP results. Experimental measurements of characteristic parameters including liquid and vapor jet penetration, liftoff length, soot temperature and concentration, and turbulent flame speed, along with the shot-to-shot variability of each dataset, are presented and discussed. A statistical method is utilized to analyze the extent of this variability, and to identify superlative injections within the dataset for discussion and analysis of shot-to-shot variations.

References

1.
Bruneaux
,
G.
,
2005
, “
Mixing Process in High Pressure Diesel Jets by Normalized Laser Induced Exciplex Fluorescence—Part I: Free Jet
,”
SAE
Paper No. 2005-01-2100.10.4271/2005-01-2100
2.
Pickett
,
L. M.
,
Manin
,
J.
,
Genzale
,
C. L.
,
Siebers
,
D. L.
,
Musculus
,
M. P.
, and
Idicheria
,
C. A.
,
2011
, “
Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction
,”
SAE Int. J. Engines
,
4
(
1
), pp.
764
799
.10.4271/2011-01-0686
3.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
Large Eddy Simulation of Fuel-Spray Under Non-Reacting IC Engine Conditions
,”
Atomization Sprays
,
23
(
10
), pp.
925
955
.10.1615/AtomizSpr.2013008320
4.
Huo
,
H.
, and
Yang
,
V.
,
2017
, “
Large-Eddy Simulation of Supercritical Combustion: Model Validation Against Gaseous H2–O2 Injector
,”
J. Propul. Power
,
33
(
5
), pp.
1272
1284
.10.2514/1.B36368
5.
Maarten
,
M.
,
Somers
,
B.
,
Johnson
,
J.
,
Naber
,
J.
,
Lee
,
S. Y.
, Malbec L. M., Bruneaux G.,
Pickett
,
L. M.
,
Bardi
,
M.
,
Payri
,
R.
, and Bazyn, T., 2012, “Engine Combustion Network (ECN): Characterization and Comparison of Boundary Conditions for Different Combustion Vessels,”
Atomization Sprays
, 22(9), pp. 777–806.10.1615/AtomizSpr.2012006083
6.
Swantek
,
A.
,
Kastengren
,
A.
,
Duke
,
D.
,
Tilocco
,
Z.
,
Sovis
,
N.
, and
Powell
,
C. F.
,
2015
, “
Quantification of Shot-to-Shot Variation in Single Hole Diesel Injectors
,”
SAE Int. J. Fuels Lubr.
,
8
(
1
), pp.
160
166
.10.4271/2015-01-0936
7.
Kolla
,
H.
,
Rogerson
,
J. W.
, and
Swaminathan
,
N.
,
2010
, “
Validation of a Turbulent Flame Speed Model Across Combustion Regimes
,”
Combust. Sci. Technol.
,
182
(
3
), pp.
284
308
.10.1080/00102200903341587
8.
Chaudhuri
,
S.
,
Wu
,
F.
,
Zhu
,
D.
, and
Law
,
C. K.
,
2012
, “
Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames
,”
Phys. Rev. Lett.
,
108
(
4
), p.
044503
.10.1103/PhysRevLett.108.044503
9.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,”
SAE
Paper No. 2014-01-1116.10.4271/2014-01-1116
10.
Hottel
,
H. C.
, and
Broughton
,
F.
,
1932
, “
Determination of True Temperature and Total Radiation From Luminous Gas Flames
,”
Ind. Eng. Chem. Anal. Ed.
,
4
(
2
), pp.
166
175
.10.1021/ac50078a004
11.
Zhao
,
H.
, and
Ladommatos
,
N.
,
1998
, “
Optical Diagnostics for Soot and Temperature Measurement in Diesel Engines
,”
Prog. Energy Combust. Sci.
,
24
(
3
), pp.
221
255
.10.1016/S0360-1285(97)00033-6
12.
Reggeti
,
S. A.
,
Agrawal
,
A. K.
, and
Bittle
,
J. A.
,
2019
, “
Two-Color Pyrometry System to Eliminate Optical Errors for Spatially Resolved Measurements in Flames
,”
Appl. Opt.
,
58
(
32
), pp.
8905
8913
.10.1364/AO.58.008905
13.
Wanstall
,
C. T.
,
Agrawal
,
A. K.
, and.
Bittle
,
J. A.
,
2019
, “
Phase Boundary Detection in Transient, Evaporating High-Pressure Fuel Sprays by Rainbow Schlieren Deflectometry
,”
Appl. Opt.
,
58
(
25
), pp.
6791
6801
.10.1364/AO.58.006791
14.
Hiroyasu
,
H.
,
Kadota
,
T.
, and
Arai
,
M.
,
1983
, “
Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions—Part 2: Computational Procedure and Parametric Study
,”
Bull. JSME
,
26
(
214
), pp.
576
583
.10.1299/jsme1958.26.576
15.
Karlsson
,
A.
,
Magnusson
,
I.
,
Balthasar
,
M.
, and
Mauss
,
F.
,
1998
, “
Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model
,”
SAE Trans.
,
107
(Sec. 3), pp.
1430
1440
.https://www.jstor.org/stable/44736627
16.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
,
2010
, “
Development of a Practical Soot Modeling Approach and Its Application to Low-Temperature Diesel Combustion
,”
Combust. Sci. Technol.
,
182
(
8
), pp.
1050
1082
.10.1080/00102200903548124
17.
Musculus
,
M. P.
, and
Kattke
,
K.
,
2009
, “
Entrainment Waves in Diesel Jets
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1170
1193
.10.4271/2009-01-1355
18.
Hessel
,
R.
,
Reitz
,
R.
, and
Musculus
,
M.
,
2019
, “
A Visual Investigation of CFD-Predicted in-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets
,”
SAE
Paper No. 2019-01-0543.10.4271/2019-01-0543
You do not currently have access to this content.