Abstract

Lean combustion is a promising strategy to increase thermal efficiency in an internal combustion engine, by exploiting a favorable specific heat ratio of the fresh mixture while simultaneously suppressing the heat losses to the cylinder wall. However, unstable ignition and slow flame propagation at fuel-lean conditions lead to large cycle-to-cycle variability and limit the high-efficiency engine operating range. Prechamber ignition is considered an effective concept to extend the lean operating limit, by providing spatially distributed ignition with multiple turbulent flame-jets and enabling a faster combustion rate compared to the conventional spark ignition approach. From a numerical modeling standpoint to date science base and available simulation tools are inadequate to properly understand and predict the combustion processes in prechamber ignited engines. In this paper, conceptually different Reynolds-averaged Navier–Stokes (RANS) combustion models widely adopted in the engine modeling community are used to simulate the ignition and combustion processes in a medium-duty natural gas engine with a prechamber spark-ignition system. A flamelet-based turbulent combustion model, i.e., G-equation, and a multizone well-stirred reactor model are employed for this modeling study. Simulation results are compared with experimental data in terms of in-cylinder pressure and heat release rate. Finally, the analysis of the performance of the two models is carried out to highlight the strengths and limitations of the two evaluated approaches.

References

1.
Ricardo
,
H. R.
,
1918
, “
Internal-Combustion Engine
,” US Patent 1,271,942.
2.
Abramovich
,
G. L.
,
1966
, “
Method of Prechamber-Torch Ignition in Internal Combustion Engines
,” US Patent 3,230,939.
3.
Honda Motor Co., Ltd.
,
2020
, “
Introducing the CVCC/1972
,” Honda Motor Co., Ltd., Shizuoka, Japan, accessed Oct. 20, 2020, https://global.honda/heritage/episodes/1972introducingthecvcc.html
4.
Najt
,
P. M.
,
Rask
,
R. B.
, and
Reuss
,
D. L.
,
2003
, “
Dual Mode Engine Combustion Process
,” US Patent 6,595,181.https://patents.google.com/patent/US6595181B2/en
5.
Bunce
,
M.
, and
Blaxill
,
H.
,
2016
, “
Sub-200 g/kWh BSFC on a Light Duty Gasoline Engine
,”
SAE
Paper No. 2016-01-0709.10.4271/2016-01-0709
6.
Shah
,
A.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2012
, “
Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated With Pre-Chamber Spark Plug and Dilution With Excess Air and EGR
,”
SAE Int. J. Engines
,
5
(
4
), pp.
1790
1801
.10.4271/2012-01-1980
7.
National Renewable Energy Laboratory, 2020, “
Natural Gas Vehicle Research Workshop
,” National Renewable Energy Laboratory, accessed Oct. 20, 2020, http://www.nrel.gov/transportation/ngv-research-workshop.html/
8.
Chinnathambi
,
P.
,
Bunce
,
M.
, and
Cruff
,
L.
,
2015
, “
RANS Based Multidimensional Modeling of an Ultra-Lean Burn Pre-Chamber Combustion System With Auxiliary Liquid Gasoline Injection
,”
SAE
Paper No. 2015-01-0386.10.4271/2015-01-0386
9.
Gholamisheeri
,
M.
,
Wichman
,
I. S.
, and
Toulson
,
E.
,
2017
, “
A Study of the Turbulent Jet Flow Field in a Methane Fueled Turbulent Jet Ignition (TJI) System
,”
Combust. Flame
,
183
, pp.
194
206
.10.1016/j.combustflame.2017.05.008
10.
Xu
,
G.
,
Wright
,
Y. M.
,
Schiliro
,
M.
, and
Boulouchos
,
K.
,
2020
, “
Characterization of Combustion in a Gas Engine Ignited Using a Small Un-Scavenged Pre-Chamber
,”
Int. J. Engine Res.
,
21
(
7
), pp.
1085
1106
.10.1177/1468087418798918
11.
Xu
,
G.
,
Kotzagianni
,
M.
,
Kyrtatos
,
P.
,
Wright
,
Y. M.
, and
Boulouchos
,
K.
,
2019
, “
Experimental and Numerical Investigations of the Unscavenged Prechamber Combustion in a Rapid Compression and Expansion Machine Under Engine-Like Conditions
,”
Combust. Flame
,
204
, pp.
68
84
.10.1016/j.combustflame.2019.01.025
12.
Kammel
,
G.
,
Mair
,
F.
,
Zelenka
,
J.
,
Lackner
,
M.
,
Wimmer
,
A.
,
Kogler
,
G.
, and
Bärow
,
E.
,
2019
, “
Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept
,”
SAE
Paper No. 2019-01-0259.10.4271/2019-01-0259
13.
Gholamisheeri
,
M.
,
Givler
,
S.
, and
Toulson
,
E.
,
2019
, “
Large Eddy Simulation of a Homogeneously Charged Turbulent Jet Ignition System
,”
Int. J. Eng. Res.
,
20
(
2
), pp.
181
193
.10.1177/1468087417742834
14.
Syrovatka
,
Z.
,
Viteck
,
O.
,
Vavra
,
J.
, and
Takats
,
M.
,
2019
, “
Scavenged Pre-Chamber Volume Effect on Gas Engine Performance and Emissions
,”
SAE
Paper No. 2019-01-0258.10.4271/2019-01-0258
15.
Bolla
,
M.
,
Shapiro
,
E.
,
Tiney
,
N.
,
Kyrtatos
,
P.
,
Kotzagianni
,
M.
, and
Boulouchos
,
K.
,
2019
, “
Numerical Simulations of Pre-Chamber Combustion in an Optically Accessible RCEM
,”
SAE
Paper No. 2019-01-0224.10.4271/2019-01-0224
16.
Allison
,
P. M.
,
de Oliveira
,
M.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2018
, “
Pre-Chamber Ignition Mechanism: Experiments and Simulations on Turbulent Jet Flame Structure
,”
Fuel
,
230
, pp.
274
281
.10.1016/j.fuel.2018.05.005
17.
Malé
,
Q.
,
Staffelbach
,
G.
,
Vermorel
,
O.
,
Misdariis
,
A.
,
Ravet
,
F.
, and
Poinsot
,
T.
,
2019
, “
Large Eddy Simulation of Pre-Chamber Ignition in an Internal Combustion Engine
,”
Flow Turbul. Combust.
,
103
(
2
), pp.
465
483
.10.1007/s10494-019-00026-y
18.
Kim
,
J.
,
Scarcelli
,
R.
,
Som
,
S.
,
Shah
,
A.
,
Biruduganti
,
M. S.
, and
Longman
,
D. E.
,
2019
, “
Evaluation of Combustion Models for CFD Simulation of Pre-Chamber Ignition in a Natural Gas Engine
,”
Proceedings of the 11th U.S. National Combustion Meeting
, Pasadena, CA, Mar. 24–27, Paper No. 1E18, pp.
1
11
.https://www.osti.gov/biblio/1518482-evaluation-combustion-models-cfd-simulation-pre-chamber-ignition-natural-gas-engine
19.
Nicor Gas, 2018, “
Composition of Natural Gas
,” Nicor Gas, accessed Dec. 3, 2018, https://www.nicorgas.com/business/gas-exchange.html
20.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
21.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 2003-01-1043.10.4271/2003-01-1043
22.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
23.
Raju
,
M.
,
Wang
,
M.
,
Dai
,
M.
,
Piggott
,
W.
, and
Flowers
,
D.
,
2012
, “
Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations
,”
SAE
Paper No. 2012-01-0135.10.4271/2012-01-0135
24.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “GRI-Mech 3.0,” GRI-Mech, accessed Mar. 25, 2021, http://combustion.berkeley.edu/gri-mech/
25.
Ewald
,
J.
, and
Peters
,
N.
,
2007
, “
On Unsteady Premixed Turbulent Burning Velocity Prediction in Internal Combustion Engines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3051
3058
.10.1016/j.proci.2006.07.119
26.
Pal
,
P.
,
Kolodziej
,
C. P.
,
Choi
,
S.
,
Som
,
S.
,
Broatch
,
A.
,
Gomez-Soriano
,
J.
,
Wu
,
Y.
,
Lu
,
T.
, and
Yee
,
C. S.
,
2018
, “
Development of a Virtual CFR Engine Model for Knocking Combustion Analysis
,”
SAE Int. J. Eng.
,
11
(
6
), pp.
1069
1082
.10.4271/2018-01-0187
27.
Convergent Science, Inc.,
2018
,
CONVERGE 2.4 Manual
,
Convergent Science
,
Madison, WI
.
You do not currently have access to this content.