Abstract

Torsional vibration is key information in monitoring the condition of the shaft system. Using the vector superposition principle, the relationship between the rotation motion and the torsional vibration of the shaft is analyzed. This paper proposes a generalized incremental encoder model and constructs a piecewise function to describe the principle of the pulse output type speed measuring device. The incremental encoder uses a fixed angular increment to stamp the time component of the angular motion of the shaft, thereby establishing a discrete relationship between the angular motion of the shaft and the time component. The relationship between the angular resolution of the encoder and the torsional vibration signal sampling theorem is deduced. The asymmetric under-sampling of the torsional vibration signals is explained from the perspective of signal sampling. According to the index period invariance of the reconstruction of the encoder disk angle sequence, a dual-period instantaneous angular speed (IAS) calculation method is proposed, which uses all the time stamps, avoiding the sampling bandwidth idle caused by the single-period method, causing the torsional vibration signal to obtain more detailed information, and its analysis bandwidth is twice that of the single-period method. Simulation and experiment verified the correctness and superiority of the research content. Finally, the calculation method was packaged as a functional module and embedded in an online torsional vibration monitoring device applied to two 1000 Mw nuclear power turbine generator sets.

References

1.
Du
,
W.
,
Wang
,
Y.
, and
Wang
,
H.
,
2020
, “
Torsional Subsynchronous Oscillations Caused by Grid-Connected Wind Farms in a Complex Multi-Machine Power System Under the Condition of Near Strong Modal Resonance
,”
Electric Power Syst. Res.
,
179
, p.
106085
.10.1016/j.epsr.2019.106085
2.
Schwibinger
,
P.
, and
Nordmann
,
R.
,
1990
, “
Torsional Vibrations in Turbogenerators Due to Network Disturbances
,”
ASME J. Vib. Acoust.
,
112
(
3
), pp.
312
320
.10.1115/1.2930510
3.
Chen
,
D.
,
Zhang
,
Y.
, and
Gu
,
Y.
,
2020
, “
Online Evaluation of Turbo-Generator Shaft Fatigue Damage Caused by Subsynchronous Oscillation
,”
IEEE Access
,
8
, pp.
55342
55353
.10.1109/ACCESS.2020.2981509
4.
Liu
,
C.
,
Jiang
,
D.
, and
Chen
,
J.
,
2014
, “
Coupled Torsional Vibration and Fatigue Damage of Turbine Generator Due to Grid Disturbance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
62501
.10.1115/1.4026214
5.
Liu
,
C.
, and
Jiang
,
D.
,
2020
, “
Torsional Vibration Characteristics and Experimental Study of Cracked Rotor System With Torsional Oscillation
,”
Eng. Failure Anal.
,
116
, p.
104737
.10.1016/j.engfailanal.2020.104737
6.
Gubran
,
A. A.
, and
Sinha
,
J. K.
,
2014
, “
Shaft Instantaneous Angular Speed for Blade Vibration in Rotating Machine
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
47
59
.10.1016/j.ymssp.2013.02.005
7.
Rauhala
,
T.
,
Gole
,
A. M.
, and
Järventausta
,
P.
,
2016
, “
Detection of Subsynchronous Torsional Oscillation Frequencies Using Phasor Measurement
,”
IEEE Trans. Power Delivery
,
31
(
1
), pp.
11
19
.10.1109/TPWRD.2015.2436814
8.
Fateh
,
F.
,
White
,
W. N.
, and
Gruenbacher
,
D.
,
2017
, “
Torsional Vibrations Mitigation in the Drivetrain of DFIG-Based Grid-Connected Wind Turbine
,”
IEEE Trans. Ind. Appl.
,
53
(
6
), pp.
5760
5767
.10.1109/TIA.2017.2730159
9.
Revel
,
G.
, and
Alonso
,
D. M.
,
2018
, “
Subsynchronous Interactions in Power Networks With Multiple DFIG-Based Wind Farms
,”
Electric Power Syst. Res.
,
165
, pp.
179
190
.10.1016/j.epsr.2018.09.009
10.
Zou
,
C.
,
Chen
,
D.
, and
Hua
,
H.
,
2003
, “
Torsional Vibration Analysis of Complicated Multi-Branched Shafting Systems by Modal Synthesis Method
,”
ASME J. Vib. Acoust
,
125
(
3
), pp.
317
323
.10.1115/1.1569949
11.
Cavina
,
N.
, and
Ponti
,
F.
,
2003
, “
Engine Torque Nonuniformity Evaluation Using Instantaneous Crankshaft Speed Signal
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
1050
1058
.10.1115/1.1581892
12.
Rémond
,
D.
,
Antoni
,
J.
, and
Randall
,
R. B.
,
2014
, “
Instantaneous Angular Speed (IAS) Processing and Related Angular Applications
,”
Mech. Syst. Signal Process.
,
45
(
1
), pp.
24
27
.10.1016/j.ymssp.2013.10.015
13.
Yang
,
J.
,
Pu
,
L.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Yan
,
X.
,
2001
, “
Fault Detection in a Diesel Engine by Analysing the Instantaneous Angular Speed
,”
Mech. Syst. Signal Process.
,
15
(
3
), pp.
549
564
.10.1006/mssp.2000.1344
14.
Moallem
,
M.
,
2008
, “
Modeling and Control of Torsional Beam Vibrations: A Wave-Based Approach
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021014
.10.1115/1.2776338
15.
Mata-Contreras
,
J.
,
Herrojo
,
C.
, and
Martin
,
F.
,
2017
, “
Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications
,”
IEEE Trans. Microwave Theory Tech.
,
65
(
11
), pp.
4450
4460
.10.1109/TMTT.2017.2693981
16.
Lee
,
J. K.
,
Seung
,
H. M.
,
Park
,
C. I.
,
Lee
,
J. K.
,
Lim
,
D. H.
, and
Kim
,
Y. Y.
,
2018
, “
Magnetostrictive Patch Sensor System for Battery-Less Real-Time Measurement of Torsional Vibrations of Rotating Shafts
,”
J. Sound Vib.
,
414
, pp.
245
258
.10.1016/j.jsv.2017.11.023
17.
Lin
,
C.-J.
,
Lin
,
C.-R.
,
Yu
,
S.-K.
, and
Liu
,
G.-X.
,
2012
, “
Development of Wireless Torque Sensing Based on Surface Acoustic Wave Devices Using Embedded Microchip
,”
Adv. Sci. Lett.
,
8
(
1
), pp.
187
193
.10.1166/asl.2012.2464
18.
Miles
,
T. J.
,
Lucas
,
M.
,
Halliwell
,
N. A.
, and
Rothberg
,
S. J.
,
1999
, “
Torsional and Bending Vibration Measurement on Rotors Using Laser Technology
,”
J. Sound Vib.
,
226
(
3
), pp.
441
467
.10.1006/jsvi.1999.2253
19.
Li
,
Y.
,
Gu
,
F.
,
Harris
,
G.
,
Ball
,
A.
,
Bennett
,
N.
, and
Travis
,
K.
,
2005
, “
The Measurement of Instantaneous Angular Speed
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
786
805
.10.1016/j.ymssp.2004.04.003
20.
Anuchin
,
A.
,
Dianov
,
A.
, and
Briz
,
F.
, “
Synchronous Constant Elapsed Time Speed Estimation Using Incremental Encoders
,”
IEEE/ASME Transactions on Mechatronics
,
24
(
4
), pp.
1893
1901
.10.1109/TMECH.2019.2928950
21.
Zhang
,
Z.
,
Ni
,
F.
,
Dong
,
Y.
,
Guo
,
C.
,
Jin
,
M.
, and
Liu
,
H.
, “
A Novel Absolute Magnetic Rotary Sensor
,”
IEEE Transactions on Industrial Electronics
,
62
(
7
), pp.
4408
4419
.10.1109/TIE.2014.2387794
22.
Diamond
,
D. H.
,
Heyns
,
P. S.
, and
Oberholster
,
A. J.
,
2016
, “
Online Shaft Encoder Geometry Compensation for Arbitrary Shaft Speed Profiles Using Bayesian Regression
,”
Mech. Syst. Signal Process.
,
81
, pp.
402
418
.10.1016/j.ymssp.2016.02.060
23.
Yu
,
S. D.
, and
Zhang
,
X.
,
2010
, “
A Data Processing Method for Determining Instantaneous Angular Speed and Acceleration of Crankshaft in an Aircraft Engine-Propeller System Using a Magnetic Encoder
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
1032
1048
.10.1016/j.ymssp.2009.10.010
24.
Zeng
,
Q.
,
Feng
,
G.
,
Shao
,
Y.
,
Devitt
,
J.
,
Gu
,
F.
, and
Ball
,
A.
,
2020
, “
An Accurate Instantaneous Angular Speed Estimation Method Based on a Dual Detector Setup
,”
Mech. Syst. Signal Process.
,
140
, p.
106674
.10.1016/j.ymssp.2020.106674
25.
Horodinca
,
M.
,
Ciurdea
,
I.
,
Chitariu
,
D.-F.
,
Munteanu
,
A.
, and
Boca
,
M.
,
2020
, “
Some Approaches on Instantaneous Angular Speed Measurement Using a Two-Phase n Poles AC Generator as Sensor
,”
Measurement
,
157
, p.
107636
.10.1016/j.measurement.2020.107636
26.
Rivola
,
A.
, and
Troncossi
,
M.
,
2014
, “
Zebra Tape Identification for the Instantaneous Angular Speed Computation and Angular Resampling of Motorbike Valve Train Measurements
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
5
13
.10.1016/j.ymssp.2012.11.009
27.
Addabbo
,
T.
,
Di Marco
,
M.
,
Fort
,
A.
,
Landi
,
E.
,
Mugnaini
,
M.
,
Vignoli
,
V.
, and
Ferretti
,
G.
,
2019
, “
Instantaneous Rotation Speed Measurement System Based on Variable Reluctance Sensors for Torsional Vibration Monitoring
,”
IEEE Trans. Instrument. Meas.
,
68
(
7
), pp.
2363
2373
.10.1109/TIM.2018.2877808
28.
Liska
,
J.
,
Jakl
,
J.
, and
Kunkel
,
S.
,
2019
, “
Measurement and Evaluation of Shaft Torsional Vibrations Using Shaft Instantaneous Angular Velocity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041029
.10.1115/1.4041006
You do not currently have access to this content.