Abstract

Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emission levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300 °C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity, and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g., pressure, had on the flashback limit was decoupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.

References

References
1.
Kalantari
,
A.
, and
McDonell
,
V.
,
2017
, “
Boundary Layer Flashback of Non-Swirling Premixed Flames: Mechanisms, Fundamental Research, and Recent Advances
,”
Prog. Energy Combust. Sci.
,
61
, pp.
249
292
.10.1016/j.pecs.2017.03.001
2.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2012
, “
Premixed Flame Flashback in Wall Boundary Layers Studied by Long-Distance Micro-PIV
,”
Exp. Fluids
,
52
(
2
), pp.
347
360
.10.1007/s00348-011-1226-8
3.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
4.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.10.1115/1.4004149
5.
Baumgartner
,
G.
,
Boeck
,
L. R.
, and
Sattelmayer
,
T.
,
2016
, “
Experimental Investigation of the Transition Mechanism From Stable Flame to Flashback in a Generic Premixed Combustion System With High-Speed Micro-Particle Image Velocimetry and Micro-PLIF Combined With Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021501
.10.1115/1.4031227
6.
Hoferichter
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2017
, “
Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021505
.10.1115/1.4034237
7.
Hoferichter
,
V.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2018
, “
Comparison of Two Methods to Predict Boundary Layer Flashback Limits of Turbulent Hydrogen-Air Jet Flames
,”
Flow, Turbul. Combust.
, 100(3), pp.
849
873
.10.1007/s10494-017-9882-2
8.
Shaffer
,
B.
,
Duan
,
Z.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011502
.10.1115/1.4007345
9.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Flashback Propensity of Turbulent Hydrogen-Air Jet Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061506
.10.1115/1.4031761
10.
Sattelmayer
,
T.
,
Mayer
,
C.
, and
Sangl
,
J.
,
2016
, “
Interaction of Flame Flashback Mechanisms in Premixed Hydrogen-Air Swirl Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
011503
.10.1115/1.4031239
11.
Nauert
,
A.
,
Petersson
,
P.
,
Linne
,
M.
, and
Dreizler
,
A.
,
2007
, “
Experimental Analysis of Flashback in Lean Premixed Swirling Flames: Conditions Close to Flashback
,”
Exp. Fluids
,
43
(
1
), pp.
89
100
.10.1007/s00348-007-0327-x
12.
Heeger
,
C.
,
Gordon
,
R. L.
,
Tummers
,
M. J.
,
Sattelmayer
,
T.
, and
Dreizler
,
A.
,
2010
, “
Experimental Analysis of Flashback in Lean Premixed Swirling Flames: Upstream Flame Propagation
,”
Exp. Fluids
,
49
(
4
), pp.
853
863
.10.1007/s00348-010-0886-0
13.
De
,
A.
, and
Acharya
,
S.
,
2012
, “
Parametric Study of Upstream Flame Propagation in Hydrogen-Enriched Premixed Combustion: Effects of Swirl, Geometry and Premixedness
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14649
14668
.10.1016/j.ijhydene.2012.07.008
14.
Karimi
,
N.
,
Heeger
,
C.
,
Christodoulou
,
L.
, and
Dreizler
,
A.
,
2015
, “
Experimental and Theoretical Investigation of the Flashback of a Swirling, Bluff-Body Stabilised, Premixed Flame
,”
Z. Physikalische Chem.
,
229
(
5
), pp.
663
689
.10.1515/zpch-2014-0582
15.
Ebi
,
D.
, and
Clemens
,
N. T.
,
2016
, “
Experimental Investigation of Upstream Flame Propagation During Boundary Layer Flashback of Swirl Flames
,”
Combust. Flame
,
168
, pp.
39
52
.10.1016/j.combustflame.2016.03.027
16.
Ebi
,
D.
,
Ranjan
,
R.
, and
Clemens
,
N. T.
,
2018
, “
Coupling Between Premixed Flame Propagation and Swirl Flow During Boundary Layer Flashback
,”
Exp. Fluids
,
59
(
7
), p.
109
.10.1007/s00348-018-2563-7
17.
Ranjan
,
R.
,
Ebi
,
D.
, and
Clemens
,
N. T.
,
2019
, “
Role of Inertial Forces in Flame-Flow Interaction During Premixed Swirl Flame Flashback
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5155
5162
.10.1016/j.proci.2018.09.010
18.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
19.
Dam
,
B.
,
Love
,
N.
, and
Choudhuri
,
A.
,
2011
, “
Flashback Propensity of Syngas Fuels
,”
Fuel
,
90
(
2
), pp.
618
625
.10.1016/j.fuel.2010.10.021
20.
Sayad
,
P.
,
Schönborn
,
A.
, and
Klingmann
,
J.
,
2016
, “
Experimental Investigation of the Stability Limits of Premixed Syngas-Air Flames at Two Moderate Swirl Numbers
,”
Combust. Flame
,
164
, pp.
270
282
.10.1016/j.combustflame.2015.11.026
21.
Noble
,
D. R.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
,
2006
, “
Syngas Mixture Composition Effects Upon Flashback and Blowout
,”
ASME
Paper No. GT2006-90470.10.1115/GT2006-90470
22.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2010
, “
Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control
,”
ASME
Paper No. GT2010-23456.10.1115/GT2010-23456
23.
Griebel
,
P.
,
Schären
,
R.
,
Siewert
,
P.
,
Bombach
,
R.
,
Inauen
,
A.
, and
Kreutner
,
W.
,
2013
, “
Flow Field and Structure of Turbulent High-Pressure Premixed Methane/Air Flames
,”
ASME
Paper No. GT2003-38398.10.1115/GT2003-38398
24.
Daniele
,
S.
,
Mantzaras
,
J.
,
Jansohn
,
P.
,
Denisov
,
A.
, and
Boulouchos
,
K.
,
2013
, “
Flame Front/Turbulence Interaction for Syngas Fuels in the Thin Reaction Zones Regime: Turbulent and Stretched Laminar Flame Speeds at Elevated Pressures and Temperatures
,”
J. Fluid Mech.
,
724
, pp.
36
68
.10.1017/jfm.2013.141
25.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Feb. 10, 2021, https://www.cantera.org
26.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of c1 to c2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinetics
,
45
(
10
), pp.
638
675
.10.1002/kin.20802
27.
Ji
,
C.
,
Wang
,
D.
,
Yang
,
J.
, and
Wang
,
S.
,
2017
, “
A Comprehensive Study of Light Hydrocarbon Mechanisms Performance in Predicting Methane/Hydrogen/Air Laminar Burning Velocities
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17260
17274
.10.1016/j.ijhydene.2017.05.203
28.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Güthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
29.
Schneider
,
C.
, and
Steinberg
,
A. M.
,
2018
, “
Early Warning Signals of Flashback in CH4/H2 Swirl Flames
,”
AIAA
Paper No. 2018-4473.10.2514/6.2018-4473
30.
Lieuwen
,
T.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
New York
.
31.
Gruber
,
A.
,
Kerstein
,
A. R.
,
Valiev
,
D.
,
Law
,
C. K.
,
Kolla
,
H.
, and
Chen
,
J. H.
,
2015
, “
Modeling of Mean Flame Shape During Premixed Flame Flashback in Turbulent Boundary Layers
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1485
1492
.10.1016/j.proci.2014.06.073
32.
Endres
,
A.
, and
Sattelmayer
,
T.
,
2019
, “
Numerical Investigation of Pressure Influence on the Confined Turbulent Boundary Layer Flashback Process
,”
Fluids
,
4
(
3
), p.
146
.10.3390/fluids4030146
You do not currently have access to this content.