Abstract

It is commonly accepted that fouling degrades severely axial compressor performance. Deposits build up as operating hours sum up, causing a decrease in the compressor's delivery pressure, efficiency, and flow capacity. Compressor susceptibility to fouling depends on many factors, such as atmospheric conditions, air quality, filtration system, and the size and design of the compressor. The current study identifies four basic operating scenarios which refer to the same compressor, in order to put forward a comparative assessment as to how incoming air quality would affect compressor performance. SOCRATES, an in-house, streamline curvature-based through-flow tool, in conjunction with a detailed, fully customizable fouling empirical model, conceived based on flow physics and relevant experimental data, is used to qualify and quantify compressor degradation with time.

References

1.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbine Power
,
134
(
3
), p.
032401
.10.1115/1.4004403
2.
Schneider
,
E.
,
Bussjaeger
,
S. D.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2010
, “
Analysis of Compressor on-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbine Power
,
132
(
6
), p.
062001
.10.1115/1.4000133
3.
Boyce
,
M. P.
, and
Gonzalez
,
F.
,
2007
, “
A Study of on-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbine Power
,
129
(
1
), pp.
114
122
.10.1115/1.2181180
4.
Brun
,
K.
,
Grimley
,
T. A.
,
Foiles
,
W. C.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbine Power
,
137
(
4
), p.
042605
.10.1115/1.4028618
5.
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Doumouras
,
G.
, and
Mathioudakis
,
K.
,
2012
, “
Compressor Washing Economic Analysis and Optimization for Power Generation
,”
J. Appl. Energy
,
95
, pp.
77
86
.10.1016/j.apenergy.2012.02.016
6.
Stalder
,
J. P.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences
,”
ASME J. Eng. Gas Turbine Power
,
123
(
2
), pp.
363
370
.10.1115/1.1361108
7.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.10.1115/1.2841400
8.
Parker
,
G. J.
, and
Lee
,
P.
,
1972
, “
Studies of the Deposition of Sub-Micron Particles on Turbine Blades
,”
Proc. Inst. Mech. Eng. Conf.
,
186
(
1
), pp.
519
526
.10.1243/PIME_PROC_1972_186_059_02
9.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
127
.10.1115/1.2219763
10.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
,
1989
, “
Predicting Gas Turbine Performance Deterioration Due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbine Power
,
111
(
2
), pp.
343
350
.10.1115/1.3240259
11.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbine Power
,
114
(
2
), pp.
161
168
.10.1115/1.2906565
12.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressor—Causes, Effects, Susceptibility and Sensitivity
,”
Proceedings of the TurboExpo 2009, Glasgow, UK, Paper No. GT2009-59239
.
13.
Templalexis
,
I.
,
Pilidis
,
P.
,
Pachidis
,
V.
, and
Kotsiopoulos
,
P.
,
2011
, “
Development of a 2D Compressor Streamline Curvature Code
,”
ASME
Paper No. GT2006-90867.10.1115/GT2006-90867
14.
Pachidis
,
V.
,
Pilidis
,
P.
,
Templalexis
,
I.
,
Barbosa
,
J.
, and
Nantua
,
N.
,
2007
, “
A De-Coupled Approach to Component High-Fidelity Analysis Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part G
,
221
(
1
), pp.
105
113
.10.1243/09544100JAERO37
15.
Pachidis
,
V.
,
Pilidis
,
P.
,
Templalexis
,
I.
, and
Marinai
,
L.
,
2008
, “
An Iterative Method for Blade Profile Loss Model Adaptation Using Streamline Curvature
,”
ASME J. Eng. Gas Turbine Power
,
130
(
1
), p.
011702
.10.1115/1.2747643
16.
Pachidis
,
V.
,
Pilidis
,
P.
,
Talhouarn
,
F.
,
Kalfas
,
A.
, and
Templalexis
,
I.
,
2006
, “
A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbine Power
,
128
(
3
), pp.
579
584
.10.1115/1.2135815
17.
Templalexis
,
I.
,
2014
, “
The Importance of Force Terms Modeling Within the Streamline Curvature Through Flow Method
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
7
), pp.
825
835
.10.1177/0957650914539938
18.
Azamar
,
H.
,
Pachidis
,
V.
, and
Templalexis
,
I.
,
2017
, “
An Improved Streamline Curvature Based Design Approach for Transonic Axial Flow Compressor Blading
,”
23rd ISABE Conference, Manchester, UK
, Sept. 4–8, Paper No.
ISABE-2017-22651
.http://dspace.lib.cranfield.ac.uk/handle/1826/14673
19.
Azamar
,
H.
,
Pachidis
,
V.
, and
Templalexis
,
I.
,
2017
, “
Development of a Streamline Curvature Axial-Flow Compressor Simulator Graphical User-Interface for Design and Research
,”
23rd ISABE Conference, Manchester, UK
, Sept. 4–8, Paper No.
ISABE-2017-22652
.http://dspace.lib.cranfield.ac.uk/handle/1826/14672
20.
Templalexis
,
I.
, and
Pachidis
,
V.
,
2017
, “
Simulation of Fouling in Axial Flow Compressor Using a Throughflow Method
,”
J. Energy Eng.
,
143
(
1
), p.
04016028
.10.1061/(ASCE)EY.1943-7897.0000378
21.
Urasek
,
D. C.
,
Gorell
,
W. T.
, and
Cunnan
,
W. S.
,
1980
, “
Performance of Two-Stage Fan Having Low-Aspect-Ratio, First Stage Rotor Blading
,” NASA, Washington, DC, Report No.
TP-1493
.https://ntrs.nasa.gov/citations/19790018972
22.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbine Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
23.
Koch
,
C. C.
, and
Smith
,
L. H.
, Jr.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
J. Eng. Power
,
98
(
3
), pp.
411
424
.10.1115/1.3446202
24.
Back
,
S. C.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2012
, “
Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
134
(
5
), p.
051013
.10.1115/1.4003821
25.
Aungier
,
R. H.
,
2003
,
Axial-Flow Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
Three Park Avenue, New York
, pp.
177
197
.
26.
Back
,
S. C.
,
Sohn
,
J. H.
, and
Song
,
S. J.
,
2010
, “
Impact of Surface Roughness on Compressor Cascade Performance
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
064502
.10.1115/1.4001788
27.
Mal'tsev
,
Y. N.
, and
Shakhov
,
V. G.
,
1989
, “
Influence of Roughness of Deposits in Compressor Cascade on Flow Lag Angle
,”
Sov. Aeronaut.
,
32
(
3
), pp.
90
92
.
28.
Milsch
,
R.
,
1971
, “
Systematische Untersuchung Über Den Einfluss Der Rauhigkeit Von Verdichterschaufeln Auf Den Gitterwirkungsgrad
,” Ph.D. thesis,
University of Hanover
,
Germany
.
29.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,” NASA, Washington, DC, Report No.
TP 1337
.https://ntrs.nasa.gov/citations/19780025165
30.
Melino
,
F.
,
Morini
,
M.
,
Peretto
,
A.
, and
Spina
,
M. P. P. R.
,
2012
, “
Compressor Fouling Modeling: Relationship Between Computational Roughness and Gas Turbine Operation Time
,”
ASME J. Eng. Gas Turbine Power
,
134
(
5
), p.
052401
.10.1115/1.4004739
31.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Estimation of the Particle Deposition on a Transonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbine Power
,
138
(
1
), p.
012604
.10.1115/1.4031206
32.
Zunica
,
V.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,”
Ph.D. thesis
,
Cranfield University
,
Cranfield, UK
.http://hdl.handle.net/1826/2448
33.
Giampaolo
,
A.
,
2006
,
Gas Turbine Handbook Principles and Practices
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.