Abstract

This article explores the relations between the cycle performance and the main operating parameters of the Allam cycle with uncooled turbine through a simplified thermodynamic analysis. The cycle efficiency is maximized with respect to turbine parameters. Expressions are derived for the estimation of optimum turbine inlet temperature (TIT) and pressure as well as optimum turbine exhaust pressure. The cryogenic air separation process developed by Allam is employed, which produces supercritical oxygen at combustion pressure. Typical numerical results are presented using the new expressions for optimum turbine parameters. The highest cycle efficiency is found to be 66.4% at a TIT/inlet pressure/exhaust pressure of 1306 K/300 bar/39.4 bar and a CO2 compressor exit pressure of 60 bar. The newly derived relationships for the key process parameters allow a better understanding of the operation of the Allam cycle.

References

1.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Procedia
,
37
, pp.
1135
1149
.10.1016/j.egypro.2013.05.211
2.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process, Employing Full Carbon Capture
,”
Energy Procedia
,
114
, pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
3.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2016
, “
Thermodynamic Analysis and Numerical Optimization of the NET Power Oxy-Combustion Cycle
,”
Appl. Energy
,
178
, pp.
505
526
.10.1016/j.apenergy.2016.06.060
4.
Mancuso
,
L.
,
Ferrari
,
N.
,
Chiesa
,
P.
,
Martelli
,
E.
, and
Romano
,
M.
,
2015
, “
Oxy-Combustion Turbine Power Plants
,” International Energy Agency, Cheltenham, UK, Report No. 2015/5.
5.
Mitchell
,
C.
,
Avagyan
,
V.
,
Chalmers
,
H.
, and
Lucquiaud
,
M.
,
2019
, “
An Initial Assessment of the Value of Allam Cycle Power Plants With Liquid Oxygen Storage in Future GB Electricity System
,”
Int. J. Greenhouse Gas Control
,
87
, pp.
1
18
.10.1016/j.ijggc.2019.04.020
6.
Lu
,
X.
,
Forrest
,
B.
,
Martin
,
S.
,
Fetvedt
,
J.
,
McGroddy
,
M.
, and
Freed
,
D.
,
2016
, “
Integration and Optimization of Coal Gasification Systems With a Near Zero Emissions Supercritical Carbon Dioxide Power Cycle
,”
ASME
Paper No. GT2016-58066. 10.1115/GT2016-58066
7.
Lu
,
X.
,
Martin
,
S.
,
McGroddy
,
M.
,
Swanson
,
M.
,
Stanislowski
,
J.
, and
Laumb
,
J. D.
,
2018
, “
Testing of a Novel Post Combustion Acid Removal Process for the Direct-Fired, Oxy-Combustion Allam Cycle Power Generation System
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081701
.10.1115/1.4038459
8.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sanchez
,
D.
, and
Martinez
,
G. S.
,
2018
, “
Analysis of the Thermodynamic Potential of Supercritical Carbon Dioxide Cycles: A Systematic Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051701
.10.1115/1.4038125
9.
Allam
,
R. J.
,
2018
, “
Cryogenic Air Separation Method for Producing Oxygen at High Pressures
,” U.S. Patent No. U.S. 2018/00738041.
10.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.10.1115/1.1373398
11.
Wilcock
,
R. C.
,
Young
,
J. B.
, and
Horlock
,
J. H.
,
2005
, “
The Effect of Turbine Blade Cooling on the Cycle Efficiency of Gas Turbine Power Cycles
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
109
120
.10.1115/1.1805549
12.
Haseli
,
Y.
,
2020
, “
Analytical Formulation of the Performance of the Allam Power Cycle
,”
ASME
Paper No. GT2020-15070. 10.1115/GT2020-15070
You do not currently have access to this content.