Abstract

Due to their high load flexibility and air-quality benefits, axial (sequential) stage combustion systems have become more popular among ground-based power gas turbine combustors. However, inert combustion residuals passing from the initial stage onto the secondary stage affects the reactivity and stability of the flame in the second stage of the combustor. The present study investigates laminar flame characteristics of the combustion within the second stage of a sequential combustor. The method of constant pressure for spherically expanding flames was employed to obtain laminar burning velocities (LBV) and burned gas Markstein lengths (Lb) of premixed methane/air mixtures diluted using flue gas at 3 bar and 423 K. Combustion residuals were imitated using a 19.01% H2O + 9.50% CO2 +71.49% N2 mixture by volume, while tested dilution ratios were 0%, 5%, 10%, and 15%. Experimental results showed that the LBV was decreased by 18–23%, 36–42%, and 50–52% with additions of 5%, 10%, and 15% combustion products, respectively. As the dilution and equivalence ratios increased, the Lb values increased slightly, suggesting that the stability and stretch of the CH4/air flames increased at these conditions. Numerical results were obtained from CHEMKIN using the GRI-Mech 3.0, USC Mech II, San Diego, HP-Mech, NUI Galway, and AramcoMech 1.3 mechanisms. The GRI-Mech 3.0 and HP-Mech performed best, with an average of 2% and 3% difference between numerical and experimental LBVs, respectively. The thermal-diffusion, dilution, and chemical effects of inert postcombustion gases on the LBV were found using numerical results. The dilution effect was primarily responsible, accounting for 79–84% of the LBV reduction.

References

1.
Energy Information Administration
,
2017
, “
International Energy Outlook 2017
,” Energy Information Administration, Washington, DC, accessed Oct. 31, 2018, https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
2.
Boyce
,
M. P.
,
2012
, “
10—Combustors
,”
Gas Turbine Engineering Handbook (Fourth Edition)
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
427
490
.
3.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Fruechtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
Proceedings of the Global Power and Propulsion Society Technical Conference
, Zurich, Switzerland, Jan. 16–17, Paper No. GPPS-TC-2019-0032.10.33737/jgpps/110717
4.
Schulz
,
O.
, and
Noiray
,
N.
,
2019
, “
Combustion Regimes in Sequential Combustors: Flame Propagation and Autoignition at Elevated Temperature and Pressure
,”
Combust. Flame
,
205
, pp.
253
268
.10.1016/j.combustflame.2019.03.014
5.
Bulysova
,
L. A.
,
Berne
,
A. L.
,
Vasil'ev
,
V. D.
,
Gutnik
,
M. N.
, and
Gutnik
,
M. M.
,
2018
, “
Study of Sequential Two-Stage Combustion in a Low-Emission Gas Turbine Combustion Chamber
,”
Therm. Eng.
,
65
(
11
), pp.
806
817
.10.1134/S0040601518110010
6.
Winkler
,
D.
,
Geng
,
W.
,
Engelbrecht
,
G.
,
Stuber
,
P.
,
Knapp
,
K.
, and
Griffin
,
T.
,
2017
, “
Staged Combustion Concept for Increased Operational Flexibility of Gas Turbines
,” Proceedings of the Global Power and Propulsion Society Technical Conference, Zurich, Switzerland, Jan. 16–18, Paper No.
GPPF-2017-64
.https://pdfs.semanticscholar.org/cffe/ec481e7bc796f7dc9fad434f8cabefb2bf1b.pdf
7.
Halter
,
F.
,
Foucher
,
F.
,
Landry
,
L.
, and
Mounaïm-Rousselle
,
C.
,
2009
, “
Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames
,”
Combust. Sci. Technol.
,
181
(
6
), pp.
813
827
.10.1080/00102200902864662
8.
Wu
,
C. K.
, and
Law
,
C. K.
,
1985
, “
On the Determination of Laminar Flame Speeds From Stretched Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
1941
1949
.10.1016/S0082-0784(85)80693-7
9.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
, 3rd ed.,
McGraw-Hill
,
New York
.
10.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
.10.1016/j.pecs.2014.04.004
11.
Bradley
,
D.
,
Gaskell
,
P. H.
, and
Gu
,
X.
,
1996
, “
Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study
,”
Combust. Flame
,
104
(
1–2
), pp.
176
198
.10.1016/0010-2180(95)00115-8
12.
Gu
,
X.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.10.1016/S0010-2180(99)00142-X
13.
Stone
,
R.
,
Clarke
,
A.
, and
Beckwith
,
P.
,
1998
, “
Correlations for the Laminar-Burning Velocity of Methane/Diluent/Air Mixtures Obtained in Free-Fall Experiments
,”
Combust. Flame
,
114
(
3–4
), pp.
546
555
.10.1016/S0010-2180(97)00329-5
14.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane–Air–Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
.10.1115/1.1339984
15.
Ponnusamy
,
S.
,
Checkel
,
M. D.
, and
Fleck
,
B.
,
2005
, “
Maintaining Burning Velocity of Exhaust-Diluted Methane/Air Flames by Partial Fuel Reformation
,”
IFRF Combust. J.
, p.
200506
. https://ifrf.net/research/archive/maintaining-burning-velocity-of-exhaust-diluted-methane-air-flames-by-partial-fuel-reformation/#
16.
Qiao
,
L.
,
Gan
,
Y.
,
Nishiie
,
T.
,
Dahm
,
W.
, and
Oran
,
E.
,
2010
, “
Extinction of Premixed Methane/Air Flames in Microgravity by Diluents: Effects of Radiation and Lewis Number
,”
Combust. Flame
,
157
(
8
), pp.
1446
1455
.10.1016/j.combustflame.2010.04.004
17.
Mazas
,
A.
,
Lacoste
,
D.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.10.1115/GT2010-22512
18.
Galmiche
,
B.
,
Halter
,
F.
,
Foucher
,
F.
, and
Dagaut
,
P.
,
2011
, “
Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Fuels
,
25
(
3
), pp.
948
954
.10.1021/ef101482d
19.
Mazas
,
A. N.
,
Fiorina
,
B.
,
Lacoste
,
D.
, and
Schuller
,
T.
,
2011
, “
Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames
,”
Combust. Flame
,
158
(
12
), pp.
2428
2440
.10.1016/j.combustflame.2011.05.014
20.
Yongliang
,
X.
,
Wang
,
J.
,
Zhang
,
M.
,
Gong
,
J.
,
Jin
,
W.
, and
Huang
,
Z.
,
2013
, “
Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted With CO2
,”
Energy Fuels
,
27
(
10
), pp.
6231
6237
.https://doi.org/10.1021/ef401220h
21.
Zahedi
,
P.
, and
Yousefi
,
K.
,
2014
, “
Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO Formation of Methane-Air Mixtures
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
377
386
.10.1007/s12206-013-0970-5
22.
Chan
,
Y.
,
Zhu
,
M.
,
Zhang
,
Z.
,
Liu
,
P.
, and
Zhang
,
D.
,
2015
, “
The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Procedia
,
75
, pp.
3048
3053
.10.1016/j.egypro.2015.07.621
23.
Khan
,
A. R.
,
Anbusaravanan
,
S.
,
Kalathi
,
L.
,
Velamati
,
R.
, and
Prathap
,
C.
,
2017
, “
Investigation of Dilution Effect With N2/CO2 on Laminar Burning Velocity of Premixed Methane/Oxygen Mixtures Using Freely Expanding Spherical Flames
,”
Fuel
,
196
, pp.
225
232
.10.1016/j.fuel.2017.01.086
24.
Duva
,
B. C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2020
, “
Effect of CO2 Dilution on the Laminar Burning Velocities of Premixed Methane/Air Flames at Elevated Temperature
,”
ASME. J. Eng. Gas Turbines Power
, 142(3), p. 031014.10.1115/1.4044641
25.
Duva
,
B. C.
,
Chance
,
L.
, and
Toulson
,
E.
,
2020
, “
Dilution Effect of Different Combustion Residuals on Laminar Burning Velocities and Burned Gas Markstein Lengths of Premixed Methane/Air Mixtures at Elevated Temperature
,”
Fuel
,
267
, p.
117153
.10.1016/j.fuel.2020.117153
26.
Gregory
,
S.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M. C.
,
Bowman
,
T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2019
, “GRI-Mech 3.0,” GRI-Mech 3.0, accessed Oct. 13, 2019, http://combustion.berkeley.edu/gri-mech/version30/text30.html
27.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II: High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed Oct. 13, 2019, http://ignis.usc.edu/USC_Mech_II.htm
28.
University of California at San Diego
,
2019
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, San Diego, CA, accessed Oct. 13, http://combustion.ucsd.edu
29.
Yang
,
X.
,
Shen
,
X.
,
Santer
,
J.
,
Zhao
,
H.
, and
Ju
,
Y.
,
2017
, “Princeton HP-Mech,” HP-Mech, accessed Jan. 17, 2020, http://engine.princeton.edu/mechanism/HP-Mech.html
30.
Burke
,
U.
,
Somers
,
K.
,
O'Toole
,
P.
,
Zinner
,
C.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E.
,
Metcalfe
,
W.
,
Serinyel
,
Z.
, and
Curran
,
H.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.10.1016/j.combustflame.2014.08.014
31.
Metcalfe
,
W.
,
Burke
,
S.
,
Ahmed
,
S.
, and
Curran
,
H.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinetics
,
45
(
10
), pp.
638
675
.10.1002/kin.20802
32.
ANSYS
,
2016
, “
ANSYS Reaction Design: ANSYS CHEMKIN-PRO 17.2
,”
ANSYS
,
San Diego, CA
.
33.
Burke
,
M.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
(
4
), pp.
771
779
.10.1016/j.combustflame.2009.01.013
34.
Kelley
,
A.
, and
Law
,
C. K.
,
2009
, “
Nonlinear Effects in the Extraction of Laminar Flame Speeds From Expanding Spherical Flames
,”
Combust. Flame
,
156
(
9
), pp.
1844
1851
.10.1016/j.combustflame.2009.04.004
35.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer
,
Berlin Heidelberg
, pp.
165
261
.
36.
Duva
,
B. C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2019
, “
Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures With CO2 Dilution
,”
SAE Int. J. Adv. Curr. Practices Mobility
,
1
(
3
), pp.
1148
1157
.10.4271/2019-01-0572
37.
Duva
,
B. C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2019
, “
Experimental and Numerical Investigation of the CO2 Dilution Effect on Laminar Burning Velocities and Burned Gas Markstein Lengths of High/Low RON Gasolines and Isooctane Flames at Elevated Temperatures
,”
Energy Fuels
, 34(1), pp.
996
1004
.10.1021/acs.energyfuels.9b03854
38.
Eckhoff
,
R.
,
Ngo
,
M.
, and
Olsen
,
W.
,
2010
, “
On the Minimum Ignition Energy (MIE) for Propane/Air
,”
J. Hazard. Mater.
,
175
(
1–3
), pp.
293
297
.10.1016/j.jhazmat.2009.09.162
39.
Harris
,
M.
,
Grumer
,
J.
,
von Elbe
,
G.
, and
Lewis
,
B.
,
1948
, “
Burning Velocities, Quenching, and Stability Data on Nonturbulent Flames of Methane and Propane With Oxygen and Nitrogen: Application of Theory of Ignition, Quenching, and Stabilization to Flames of Propane and Air
,”
Symp. Combust. Flame, Explos. Phenom.
,
3
(
1
), pp.
80
89
.10.1016/S1062-2896(49)80010-9
40.
Chen
,
Z.
,
Burke
,
M.
, and
Ju
,
Y.
,
2009
, “
Effects of Lewis Number and Ignition Energy on the Determination of Laminar Flame Speed Using Propagating Spherical Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1253
1260
.10.1016/j.proci.2008.05.060
41.
Chen
,
Z.
,
2015
, “
On the Accuracy of Laminar Flame Speeds Measured From Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure
,”
Combust. Flame
,
162
(
6
), pp.
2442
2453
.10.1016/j.combustflame.2015.02.012
42.
Markstein
,
G.
,
1951
, “
Experimental and Theoretical Studies of Flame-Front Stability
,”
J. Aeronaut. Sci.
,
18
(
3
), pp.
199
209
.10.2514/8.1900
43.
Chen
,
Z.
,
2011
, “
On the Extraction of Laminar Flame Speed and Markstein Length From Outwardly Propagating Spherical Flames
,”
Combust. Flame
,
158
(
2
), pp.
291
300
.10.1016/j.combustflame.2010.09.001
44.
Wu
,
F.
,
Liang
,
W.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2015
, “
Uncertainty in Stretch Extrapolation of Laminar Flame Speed From Expanding Spherical Flames
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
663
670
.10.1016/j.proci.2014.05.065
45.
Duva
,
B. C.
,
Wang
,
Y.-C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2020
, “
The Effect of Exhaust Gas Recirculation (EGR) on Fundamental Characteristics of Premixed Methane/Air Flames
,”
SAE
International Paper No. 2020-01-0339.10.4271/2020-01-0339
46.
Duva
,
B. C.
,
Wang
,
Y.-C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2020
, “
Correlations for the Laminar Burning Velocity and Burned Gas Markstein Length of Methane-Air Mixtures Diluted With Flue Gases at High Temperatures and Pressures
,”
Fuel
,
281
, p.
118721
.10.1016/j.fuel.2020.118721
47.
Vagelopoulos
,
C.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
1994
, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1341
1347
.10.1016/S0082-0784(06)80776-9
48.
Vagelopoulos
,
C.
, and
Egolfopoulos
,
F.
,
1998
, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
513
519
.10.1016/S0082-0784(98)80441-4
49.
Egolfopoulos
,
F.
,
Cho
,
P.
, and
Law
,
C. K.
,
1989
, “
Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures
,”
Combust. Flame
,
76
(
3–4
), pp.
375
391
.10.1016/0010-2180(89)90119-3
50.
McLean
,
I.
,
Smith
,
D.
, and
Taylor
,
S.
,
1994
, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction
,”
25th Symp. (Int.) Combust.
,
25
(
1
), pp.
749
757
.10.1016/S0082-0784(06)80707-1
51.
Akram
,
M.
, and
Kumar
,
S.
,
2012
, “
Measurement of Laminar Burning Velocity of Liquified Petrolium Gas Air Mixtures at Elevated Temperatures
,”
Energy Fuels
,
26
(
6
), pp.
3267
3274
.10.1021/ef300101n
52.
Ren
,
F.
,
Chu
,
H.
,
Xiang
,
L.
,
Han
,
W.
, and
Gu
,
M.
,
2018
, “
Effect of Hydrogen Addition on the Laminar Premixed Combustion Characteristics the Main Components of Natural Gas
,”
J. Energy Inst.
, 92(4), pp.
1178
1190
.10.1016/j.joei.2018.05.011
53.
Santner
,
J.
,
Dryer
,
F.
, and
Ju
,
Y.
,
2013
, “
The Effects of Water Dilution on Hydrogen, Syngas, and Ethylene Flames at Elevated Pressure
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
719
726
.10.1016/j.proci.2012.06.065
54.
Kéromnès
,
A.
,
Metcalfe
,
W.
,
Heufer
,
K.
,
Donohoe
,
N.
,
Das
,
A.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M.
,
Petersen
,
E.
,
Pitz
,
W.
, and
Curran
,
H.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
55.
Burke
,
S.
,
Metcalfe
,
W.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
,
Haas
,
F.
,
Santner
,
J.
,
Dryer
,
F.
, and
Curran
,
H.
,
2014
, “
An Experimental and Modeling Study of Propene Oxidation—Part 1: Speciation Measurements in Jet-Stirred and Flow Reactors
,”
Combust. Flame
,
161
(
11
), pp.
2765
2784
.10.1016/j.combustflame.2014.05.010
56.
NUI Galway
,
2013
, “
AramcoMech 1.3 Supplementary Material
,” NUI Galway, Galway, Ireland, accessed Jan. 29, 2020, http://www.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/aramcomech13/
57.
Gokulakrishnan
,
P.
,
Fuller
,
C.
,
Klassen
,
M.
,
Joklik
,
R.
,
Kochar
,
Y.
,
Vaden
,
S.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2014
, “
Experiments and Modeling of Propane Combustion With Vitiation
,”
Combust. Flame
,
161
(
8
), pp.
2038
2053
.10.1016/j.combustflame.2014.01.024
You do not currently have access to this content.