Abstract

A method of fluid–structure interaction coupling is implemented for a forced-response, vibration-induced fatigue life estimation of a high-pressure turbine blade. Two simulations approaches; a two-way (fully coupled) and one-way (uncoupled) methods are implemented to investigate the influence of fluid–solid coupling on a turbine blade structural response. The fatigue analysis is performed using the frequency domain spectral moments estimated from the response power spectral density (PSD) of the two simulation cases. The method is demonstrated in relation to the time-domain method of the rainflow cycle counting method with mean stress correction. Correspondingly, the mean stress and multi-axiality effects are also accounted for in the frequency domain spectral approach. In this case, a multiplication coefficient is derived based on the Morrow equation, while the case of multi-axiality is based on a criterion which reduces the triaxial stress state to an equivalent uniaxial stress using the critical plane assumption. The analyses show that while the vibration-induced stress histories of both simulation approaches are stationary, they violate the assumption of normality of the frequency domain approaches. The stress history profile of both processes can be described as platykurtic with the distributions having less mass near its mean and in the tail region, as compared to a Gaussian distribution with an equal standard deviation. The fully coupled method is right leaning with positive skewness while the uncoupled approach is left leaning with negative skewness. The directional orientation of the principal axes was also analyzed based on the Euler angle estimation. Although noticeable differences were found in the peak distribution of the normal stresses for both methods, the predicted Euler angle orientations were consistent in both cases, depicting a similar orientation of the critical plane during a crack initiation and propagation process. Finally, the fatigue life estimation was shown to be conservative in the fully coupled solution approach.

References

1.
Platzer
,
M.
, and
Carta
,
F.
,
1988
, AGARD Manual on Aeroslasticity in Axial-Flow Turbomachines (NATO AGARD Series on Structural Dynamics and Aeroelasticity), Vol.
2
, Advisory Group for Aerospace Research and Development, Essex, UK.
2.
Fleeter
,
S.
,
Zhou
,
C.
,
Houstis
,
E. N.
, and
Rice
,
J.
,
1999
, “
Fatigue Life Prediction of Turbomachine Blading
,” Department of Computer Science, Purdue University, West Lafayette, IN, Report No.
99
030
.
3.
Halford
,
G.
,
Meyer
,
T. G.
,
Nissley
,
D. M.
, and
Swanson
,
G. A.
,
1989
, “
Fatigue Life Prediction Modeling for Turbine Hot Section
,” NASA Lewis Research Center, Cleveland, OH.
4.
Carpinteri
,
A.
,
Fortese
,
G.
,
Ronchei
,
C.
,
Scorza
,
D.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
,
2016
, “
Fatigue Life Evaluation of Metallic Structures Under Multiaxial Random Loading
,”
Int. J. Fatigue
,
90
, pp.
191
199
.10.1016/j.ijfatigue.2016.05.007
5.
Benasciutti
,
D.
,
Sherrat
,
F.
, and
Cristofori
,
A.
,
2015
, “
Basic Principles of Spectral Multi-Axial Fatigue Analysis
,”
Procedia Eng.
,
101
, pp.
34
42
.10.1016/j.proeng.2015.02.006
6.
Zwaan
,
R.
, and
Prananta
,
B. B.
,
2002
, “
Fluid/Structure Interaction in Numerical Aeroelastic Simulation
,”
Int. J. Non-Linear Mech.
,
37
(
4–5
), pp.
987
1002
.10.1016/S0020-7462(01)00110-X
7.
Leger
,
J.
,
2010
, “
Development of an Unsteady Aeroelastic Solver for the Analysis of Modern Turbomachine Design
,” Ph.D. thesis,
Wright State University
,
Dayton, OH
.
8.
El-Aini
,
Y.
,
deLaneuville
,
R.
,
Stoner
,
A.
, and
Capace
,
V.
,
1997
, “
High-Cycle Fatigue Life of Turbomachinery Components—Industry Perspective
,” 33rd AIAA Joint Propulsion Conference and Exhibit, Seattle, WA, July 6.
9.
Gottfried
,
D. A.
, and
Fleeter
,
S.
,
1999
, “
Aerodynamic Damping Predictions for Turbomachinery Blade Rows Using a Three-Dimension Time Marching Simulations
,” Purdue University, West Lafayette, IN, Report No. 99-026.
10.
Carpinteri
,
A.
,
Karolczuk
,
A.
,
Macha
,
E.
, and
Vantadori
,
S.
,
2002
, “
Expected Position of the Fatigue Fracture Plane by Using the Weighted Mean Principal Euler Angles
,”
Int. J. Fract.
,
115
(
1
), pp.
87
99
.10.1023/A:1015737800962
11.
Carpinteri
,
A.
,
Macha
,
E.
,
Brighenti
,
R.
, and
Spagnoli
,
A.
,
1999
, “
Expected Principal Stress Directions Under Multiaxial Random Loading. Part I: Theoretical Aspects of the Weight Function Method
,”
Int. J. Fatigue
,
21
(
1
), pp.
83
88
.10.1016/S0142-1123(98)00046-2
12.
Marciniak
,
Z.
, and
Rozumek
,
D.
,
2016
, “
Professor Ewald Macha's Contribution to the Development of Methods for Multiaxial Fatigue Life Estimation
,”
Int. J. Fatigue
,
92
, pp.
384
394
.10.1016/j.ijfatigue.2016.05.008
13.
Wirsching
,
P.
, and
Light
,
C.
,
1980
, “
Fatigue Under Wide Band Random Stresses
,”
J. Struct. Div. ASCE
,
106
, pp.
1593
1607
.10.1115/1.3443520
14.
Palmieri
,
M.
,
Česnik
,
M.
,
Slavič
,
J.
,
Cianetti
,
F.
, and
Boltežar
,
M.
,
2017
, “
Non-Gaussian and Non-Stationarity in Vibration Fatigue
,”
Int. J. Fatigue
,
97
, pp.
9
19
.10.1016/j.ijfatigue.2016.12.017
15.
de la Fuente
,
E.
,
2009
, “
Von Mises Stresses in Random Vibration of Linear Structures
,”
Comput. Struct.
,
87
(
21–22
), pp.
1253
1262
.10.1016/j.compstruc.2009.06.008
16.
Preumont
,
A..
, and
PiéFort
,
V.
,
1994
, “
Predicting Random High-Cycle Fatigue Life With Finite Elements
,”
ASME J. Vib. Acoust.
,
116
(
2
), pp.
245
248
.10.1115/1.2930420
17.
Brown
,
M. W.
, and
Miller
,
K. J.
,
1973
, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
745
755
.10.1243/PIME_PROC_1973_187_161_02
18.
Lutes
,
L. D.
, and
Larsen
,
C. E.
,
1990
, “
An Improved Spectral Method for Variable Amplitude Fatigue Prediction
,”
J. Struct. Eng.
,
116
(
4
), pp.
1149
1164
.10.1061/(ASCE)0733-9445(1990)116:4(1149)
19.
Irvine
,
T.
,
2013
, “
Dirlik Rainflow Counting Method From Response PSD
,” Vibration Data, accessed Nov. 23, 2020, https://vibrationdata.wordpress.com/2013/11/08/dirlik-rainflow-counting-method-from-response-psd/
20.
Rizzi
,
S. A.
,
Przekop
,
A.
, and
Turner
,
T.
,
2011
, “
On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loading
,” Eighth International Conference on Structural Dynamics (
EURODYN2011
), Leuven, Belgium, July 4–6, pp.
1
8
.https://ntrs.nasa.gov/api/citations/20110013658/downloads/20110013658.pdf?attachment=true
21.
Karolczuk
,
A.
, and
Macha
,
E.
,
2005
, “
A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials
,”
Int. J. Fract.
,
134
(
3–4
), pp.
267
304
.10.1007/s10704-005-1088-2
22.
Stulen
,
F.
, and
Cummings
,
H. N.
,
1954
, “
A Failure Criterion for Multiaxial Fatigue Stresses
,”
Proc. ASTM
,
54
, pp.
822
835
.
23.
Lutes
,
L. D.
,
Corazao
,
M.
,
Hu
,
J. S.-L.
, and
Zimmerman
,
J.
,
1984
, “
Stochastic Fatigue Damage Accumulation
,”
J. Struct. Eng.
,
110
(
11
), pp.
2585
2601
.10.1061/(ASCE)0733-9445(1984)110:11(2585)
24.
Correa
,
C. D.
,
Hero
,
R.
, and
Ma
,
K. L.
,
2011
, “
A Comparison of Gradient Estimation Methods for Volume Rendering on Unstructured Meshes
,”
IEEE Trans. Visualization Comput. Graphics
,
17
(
3
), pp.
305
319
.10.1109/TVCG.2009.105
25.
Moukalled
,
F.
,
Magani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With OPENFOAM and MATLAB
,
Springer International
,
Cham, Switzerland
.
26.
Harten
,
A.
,
1983
, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
Comput. Phys.
,
49
(
3
), pp.
357
393
10.1016/0021-9991(83)90136-5.
27.
Menter
,
F.
,
1994
, “
Two-Equations Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
289
.10.2514/3.12149
28.
Menter
,
F.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industry Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
29.
Hirsch
,
C.
,
2007
,
Numerical Computation of Internal and External Flows
(Fundamentals of Computational Fluid Dynamics), Vol.
1
,
Wiley
,
Oxford, UK
.
30.
Tran
,
D. M.
,
2009
, “
Multi-Parameter Aerodynamic Modeling for Aeroelastic Coupling in Turbomachinery
,”
J. Fluids Struct.
,
25
(
3
), pp.
519
534
.10.1016/j.jfluidstructs.2008.09.001
31.
Su
,
D.
,
Zhang
,
W.
, and
Ye
,
Z.
,
2016
, “
A Reduced Order Model for Uncoupled and Coupled Flutter Analysis
,”
J. Fluids Struct.
,
61
, pp.
410
430
.10.1016/j.jfluidstructs.2015.11.013
32.
Petrov
,
E.
,
Mare
,
L.
,
Hennings
,
D. H.
, and
Elliot
,
R.
,
2009
, “
Forced Response of Mistuned Bladed Disc in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME
Paper No. GT2009-59632.10.1115/GT2009-59632
33.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
34.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
,
1994
, “
Vane-Blade Interaction in a Transonic Turbine—Part 1: Aerodynamics
,”
J. Propul. Power
,
10
(
3
), pp.
305
311
.10.2514/3.23757
35.
Doi
,
H.
,
2002
,
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachine
,
Standford University
,
Standford, CA
.
36.
Bachau
,
O. A.
, and
Craig
,
J. I.
,
2009
,
Structural Analysis (With Applications to Aerospace Structures)
,
Springer Science + Business Media
,
New York
.
You do not currently have access to this content.