Abstract

This work presents fully coupled computational fluid dynamics (CFD) simulations and thermodynamic cycle analyses of a small-scale turbojet engine at several conditions along the equilibrium running line. The CFD simulations use a single mesh for the entire engine, from the intake to the exhaust, allowing information to travel in all directions. The CFD simulations are performed along the equilibrium running line by using the iterative Secant method to compute the fuel flow rate required to match the compressor and turbine power. The freestream pressure and temperature and shaft angular speed are the only inputs needed for the CFD simulations. To evaluate the consistency of the CFD results with thermodynamic cycle results, outputs from the CFD simulations are prescribed as inputs to the cycle model. This approach enables on-design and off-design cycle calculations to be performed without requiring turbomachinery performance maps. In contrast, traditional off-design cycle analyses require either scaling, calculating, or measuring compressor and turbine maps with boundary condition assumptions. In addition, the CFD simulations and the cycle analyses are compared with measurements of the turbojet engine. The CFD simulations, thermodynamic cycle analyses, and measurements agree in terms of total temperature and pressure at the diffuser–combustor interface, air and fuel mass flow rate, equivalence ratio, and thrust. The developed methods to perform CFD simulations from the intake to the exhaust of the turbojet engine are expected to be useful for guiding the design and development of future small-scale gas turbine engines.

References

1.
Turner
,
M. G.
, “
Lessons Learned From the GE90 3D Full Engine Simulations
,”
AIAA
Paper No. 2010-1606.10.2514/6.2010-1606
2.
Claus
,
R. W.
,
Lavelle
,
T.
,
Townsend
,
S.
, and
Turner
,
M.
,
2009
, “
Coupled Component, Full Engine Simulation of a Gas Turbine Engine
,”
AIAA
Paper No. 2009-5017.10.2514/6.2009-5017
3.
Reed
,
J. A.
,
Turner
,
M.
,
Norris
,
A.
, and
Veres
,
J. P.
, “
Towards an Automated Full-Turbofan Engine Numerical Simulation
,” NASA, Washington, DC, Report No.
TM – 2003–212494
.https://ntrs.nasa.gov/citations/20030068256
4.
Turner
,
M.
,
Reed
,
J. A.
,
Ryder
,
R.
, and
Veres
,
J. P.
, “
Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-d Cycle Simulation
,”
ASME
Paper No. GT2004-53956.10.111/GT2004-53956
5.
Schlüter
,
J.
,
Apte
,
S.
,
Kalitzin
,
G.
,
Weide
,
E. V D.
,
Alonso
,
J. J.
, and
Pitsch
,
H.
,
2005
, “
Large-Scale Integrated LES-RANS Simulations of a Gas Turbine Engine
,”
Center of Turbulence Research, Annual Research Briefings
, Stanford, CA. https://web.stanford.edu/group/ctr/ResBriefs05/schluter2.pdf
6.
Teixeria
,
M.
,
Romagnosi
,
L.
,
Mezine
,
M.
,
Baux
,
Y.
,
Anker
,
J. E.
,
Claramunt
,
K.
, and
Hirsch
,
C.
,
2018
, “
A Methodology for Fully-Coupled CFD Engine Simulations, Applied to a Micro Gas Turbine Engine
,”
ASME
Paper No. GT2018-76870.10.1115/GT2018-76870
7.
Romagnosi
,
L.
,
Li
,
Y.
,
Mezine
,
M.
,
Teixeira
,
M.
,
Vilmin
,
S.
,
Anker
,
J. E.
,
Claramunt
,
K.
,
Baux
,
Y.
, and
Hirsch
,
C.
,
2019
, “
A Methodology for Steady and Unsteady Full-Engine Simulations
,”
ASME
Paper No. GT2019-90110.10.1115/GT2019-90110
8.
Briones
,
A. M.
,
Battelle
,
R. T.
,
Rankin
,
B. A.
, and
Caswell
,
A. W.
,
2019
, “
Computational Fluid Dynamics Simulations of a Small-Scale Gas Turbine Engine
,”
JANNAF 37th Airbreathing Propulsion
, Dayton, OH, June 3–7.
9.
Briones
,
A. M.
,
Sykes
,
J. P.
,
Rankin
,
B. A.
, and
Caswell
,
A. W.
, “
Steady-State CFD Simulations of a Small-Scale Turbojet Engine From Idle to Cruise Conditions
,”
AIAA
Paper No. 2020-2084.10.2514/6.2020-2084
10.
Briones
,
A. M.
,
Olding
,
R.
,
Sykes
,
J. P.
,
Rankin
,
B. A.
,
McDevitt
,
K.
, and
Heyne
,
J. S.
, “
Combustion Modeling Software Development, Verification and Validation
,”
ASME
Paper No. Power2018-7433.10.1115/Power2018-7433
11.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
,
Cohen
,
H.
,
Straznicky
,
P. V.
, and
Nix
,
A. C.
,
2017
,
Gas Turbine Theory
,
7
th ed., Pearson,
New York
.
12.
ANSYS,
2018
,
CFX-Solver Theory Guide
,
ANSYS
,
Canonsburg, PA
.
13.
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
, “Aircraft Propulsion System Performance Station Designation and Nomenclature,” SAE International, Warrendale, PA, Report No.
ARP755, 1991-10-09
.https://www.sae.org/standards/content/arp755/
14.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2013
, “
A Critical Review of Computational Methods and Their Application in Industrial Fan Design
,”
Internationally Scholarly Res. Not.
,
2013
, pp.
1
20
.10.1155/2013/625175
15.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill Publishing
,
New York
.
16.
Patankar
,
S. V.
, “
Numerical Heat Transfer and Fluid Flow
,”
Series in Computational and Physical Process in Mechanics and Thermal Sciences
,”
W. J.
Minkowycz
, and
E. M.
Sparrow
, eds., Hemisphere Publishing Corporation, New York.
17.
Xu
,
R.
,
Wang
,
K.
,
Banerjee
,
S.
,
Shao
,
J.
,
Parise
,
T.
,
Zhu
,
Y.
,
Wang
,
S.
,
Movaghar
,
A.
,
Lee
,
D. J.
,
Zhao
,
R.
,
Han
,
X.
,
Gao
,
Y.
,
Lu
,
T.
,
Brezinsky
,
K.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
, and
Wang
,
H.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—II: Reaction Kinetic Models of Jet and Rocket Fuels
,”
Combust. Flame
,
193
, pp.
520
537
.10.1016/j.combustflame.2018.03.021
18.
Colket
,
M.
,
Heyne
,
J.
,
Rumizen
,
M.
,
Gupta
,
M.
,
Edwards
,
T.
,
Roquemore
,
W. M.
,
Andac
,
G.
,
Boehm
,
R.
,
Lovett
,
J.
,
Williams
,
R.
,
Condevaux
,
J.
,
Turner
,
D.
,
Rizk
,
N.
,
Tishkoff
,
J.
,
Li
,
C.
,
Moder
,
J.
,
Friend
,
D.
, and
Sankaran
,
V.
,
2017
, “
Overview of the National Jet Fuels Combustion Program
,”
AIAA J.
,
55
(
4
), pp.
1087
1104
.10.2514/1.J055361
19.
Wang
,
H.
,
Xu
,
R.
,
Wang
,
K.
,
Bowman
,
C. T.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Brezinsky
,
K.
, and
Egolfopoulos
,
F. N.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—I: Evidence From Experiments, and Thermodynamic, Chemical Kinetics and Statistical Considerations
,”
Combust. Flame
,
193
, pp.
502
519
.10.1016/j.combustflame.2018.03.019
20.
Pierce
,
C. D.
, and
Moin
,
P.
,
2001
, “
Progress-Variable Approach for Large Eddy Simulation of Turbulent Combustion
,”
Ph.D. thesis
,
Stanford University
,
Stanford, CA
.https://web.stanford.edu/group/ctr/pdf/charles_pierce_thesis.pdf
21.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
22.
Hearn
,
T.
,
Hendricks
,
E.
,
Chin
,
J.
,
Gray
,
J.
, and
Moore
,
K. T.
,
2016
, “
Optimization of Turbine Engine Cycle Analysis With Analytic Derivatives
,”
AIAA
Paper No. 2016-4297.10.2514/6.2016-4297
23.
Hendricks
,
E. S.
, and
Gray
,
J. S.
,
2019
, “
pyCycle: “a Tool for Efficient Optimization of Gas Turbine Engine Cycles
,”
Aerospace
,
6
(
8
), p.
87
.10.3390/aerospace6080087
24.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: Analysis
,” NASA, Washington, DC, Report No.
1311-Part I
.https://ntrs.nasa.gov/citations/19950013764
25.
McBride
,
B. J.
, and
Gordon
,
S.
,
1996
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: User's Manual, NAS and Program Description
,” NASA, Washington, DC, Report No.
1311-Part II
.https://ntrs.nasa.gov/citations/19960044559
26.
Grannan
,
N. D.
,
Knisely
,
A. M.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
,
Huff
,
R.
, and
Holley
,
A.
,
2020
, “
Small Turbojet Altitude Test Facility
,”
AIAA
Paper No. 2020-0868.10.2514/6.2020-0868
27.
Grannan
,
N. D.
,
Hoke
,
J.
,
McClearn
,
M. J.
,
Litke
,
P.
, and
Schauer
,
F.
,
2017
, “
Trends in JetCat Microturbojet-Compressor Efficiency
,”
AIAA
Paper No. 2017-0552.10.2514/6.2017-0552
You do not currently have access to this content.