Abstract

In this paper, a deflagrative pressure gain combustor employing rotary valves is introduced that can reduce combustor length by allowing the combustion process to take place in the radial direction rather than in the axial direction with sufficient resident time. The engine is described in some detail with respect to geometry, components, and potential benefits. A demonstrator rig was designed, built, and tested for concept verification. A series of initial tests sweeping equivalence ratio from 0.4 to 0.8 using ethylene as fuel and mass flows from 75 g/s to 150 g/s is presented. The turbine rotor was driven to above 200 RPM with just four of the combustor passages operating. The initial results indicate the feasibility of the rotary valve radial engine concept and identified key challenges associated with the concept. Further studies are needed to address existing challenges and to promote the engine development.

References

1.
Koff
,
B. L.
,
2004
, “
Gas Turbine Technology Evolution: A Designer's Perspective
,”
J. Propul. Power
,
20
(
4
), pp.
577
595
.10.2514/1.4361
2.
Epstein
,
A. H.
,
2014
, “
Aeropropulsion for Commercial Aviation in the Twenty-First Century and Research Directions Needed
,”
AIAA J.
,
52
(
5
), pp.
901
911
.10.2514/1.J052713
3.
Sehra
,
A. K.
, and
Whitlow
,
W.
,
2004
, “
Propulsion and Power for 21st Century Aviation
,”
Prog. Aerosp. Sci.
,
40
(
4–5
), pp.
199
235
.10.1016/j.paerosci.2004.06.003
4.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051502
.10.1115/1.4007866
5.
Brun
,
K.
,
McKee
,
R. J.
,
Moore
,
J.
,
Gernentz
,
R. S.
,
Gernentz
,
R. S.
,
Hollingsworth
,
J. R.
, and
Smalley
,
A. J.
,
2005
, “
Prototype Development of a Novel Radial Flow Gas Turbine
,”
ASME
Paper No. GT2005-68016.10.1115/GT2005-68016
6.
Parraga
,
P.
,
Varney
,
M.
,
Tarkleson
,
E.
,
Müller
,
N.
,
Akbari
,
P.
, and
Piechna
,
J.
,
2012
, “
Development of a Wave Disk Engine Experimental Facility
,”
AIAA
Paper No. 2012-3703.10.2514/6.2012-3703
7.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
,
Vedernikov
,
E. F.
,
Samsonov
,
A. N.
, and
Zintsova
,
A. S.
,
2016
, “
Detonation Combustion of a Hydrogen–Oxygen Mixture in a Plane–Radial Combustor With Exhaustion Toward the Center
,”
Combust., Explos., Shock Waves
,
52
(
4
), pp.
446
456
.10.1134/S0010508216040080
8.
Nakagami
,
S.
,
Matsuoka
,
K.
,
Kasahara
,
J.
,
Kumazawa
,
Y.
,
Fujii
,
J.
,
Matsuo
,
A.
, and
Funaki
,
I.
,
2017
, “
Experimental Visualization of the Structure of Rotating Detonation Waves in a Disk-Shaped Combustor
,”
J. Propul. Power
,
33
(
1
), pp.
80
88
.10.2514/1.B36084
9.
Huff
,
R.
,
Polanka
,
M. D.
,
McClearn
,
M. J.
,
Schauer
,
F. R.
,
Fotia
,
M. L.
, and
Hoke
,
J. L.
,
2019
, “
Design and Operation of a Radial Rotating Detonation Engine
,”
J. Propul. Power
,
35
(
6
), pp.
1143
1150
.10.2514/1.B37578
10.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
A New Spin on Small-Scale Combustor Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011504
.10.1115/1.4040658
11.
Conrad
,
M. M.
,
Wilson
,
J. D.
, and
Polanka
,
M. D.
,
2013
, “
Integration Issues of an Ultra-Compact Combustor to a Jet Turbine Engine
,”
AIAA
Paper No. 2013-3711.10.2514/6.2013-3711
12.
Blunck
,
D.
,
Shouse
,
D.
,
Neuroth
,
C.
,
Batelle
,
R.
,
Lynch
,
A.
,
Balu
,
S.
,
Zelina
,
J.
,
Erdman
,
T.
,
Burrus
,
D.
,
Howard
,
R.
,
Briones
,
A.
,
Richardson
,
D.
, and
Caswell
,
A.
,
2013
, “
Experimental and Computational Studies of an Ultra-Compact Combustor
,”
ASME
Paper No. GT2013-94372.10.1115/GT2013-94372
13.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
14.
Agarwal
,
A. K.
,
Pandey
,
A.
,
Gupta
,
A. K.
,
Aggarwal
,
S. K.
, and
Kushari
,
A.
,
2014
,
Novel Combustion Concepts for Sustainable Energy Development
,
Springer
,
India
.
15.
Lu
,
F. K.
,
Miller
,
R.
,
Nalim
,
M. R.
, and
Yu
,
K. H.
,
2017
, “
Introduction: Special Section on Pressure Gain Combustion
,”
J. Propul. Power
,
33
(
1
), p.
16
.10.2514/1.B36585
16.
Kailasanath
,
K.
,
2020
, “
Recent Developments in the Research on Pressure-Gain Combustion Devices
,”
Innovations in Sustainable Energy and Cleaner Environment
,
Springer
, Singapore, pp.
3
21
.10.1007/978-981-13-9012-8_1
17.
Lisanti
,
J.
, and
Roberts
,
W.
,
2017
, “
Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines
,”
Combustion for Power Generation and Transportation
,
Springer
, Singapore, pp.
127
152
.10.1007/978-981-10-3785-6_7
18.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
J. Propul. Power
,
25
(
4
), pp.
833
844
.10.2514/1.34081
19.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
20.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
21.
Wu
,
Y.
,
Ma
,
F.
, and
Yang
,
V.
,
2003
, “
System Performance and Thermodynamic Cycle Analysis of Air-Breathing Pulse Detonation Engines
,”
J. Propul. Power
,
19
(
4
), pp.
556
567
.10.2514/2.6166
22.
Akbari
,
P.
, and
Polanka
,
M. D.
,
2018
, “
Performance of an Ultra-Compact Disk-Shaped Reheat Gas Turbine for Power Generation
,”
AIAA
Paper No. 2018-4878.10.2514/6.2018-4878
23.
Akbari
,
P.
,
Tait
,
C. J.
,
Polanka
,
M. D.
, and
Sell
,
B.
,
2019
, “
Development and Initial Tests of a Radial Wave Engine Rig
,”
ASME
Paper No. GT2019-90608.10.1115/GT2019-90608
24.
Akbari
,
P.
,
Tait
,
C. J.
,
Brady
,
G.
,
Polanka
,
M. D.
, and
Sell
,
B.
,
2019
, “
Enhancement of the Radial Wave Engine
,”
AIAA
Paper No. 2019-4037.10.2514/6.2019-4037
25.
Akbari
,
P.
,
Nalim
,
M. R.
,
Donovan
,
E. C.
, and
Snyder
,
P. H.
,
2008
, “
Leakage Assessment of Pressure-Exchange Wave Rotors
,”
J. Propul. Power
,
24
(
4
), pp.
732
740
.10.2514/1.31725
26.
Persico
,
G.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2017
, “
Optimal Aerodynamic Design of a Transonic Centrifugal Turbine Stage for Organic Rankine Cycle Applications
,”
Energy Procedia
,
129
, pp.
1093
1100
.10.1016/j.egypro.2017.09.222
You do not currently have access to this content.