Abstract

Microchannel manufacturing is one of the fastest growing areas in advanced manufacturing with numerous applications, including turbine blade cooling structures, compact microchannel heat exchangers, and electronic cooling devices. Recent development of metallic additive manufacturing (AM) based on direct metal laser sintering technology is capable of fabricating microscale structures with high complexity and design flexibility. However, powder bed laser sintering process produces rough surface characteristics caused by hatch overlaps and particle attachments, leading to channel size reductions and rough surfaces. In this paper, dimensional metrology of cross-sectional views of multirow microchannels made by AM was conducted by a scanning electron microscope (SEM) at different locations along the printing direction. Channel size reduction, surface roughness, and circularity tolerance of the as-printed channels were analyzed based on micrographs captured by SEM. Results showed that both channel sizes and hole pitches affected the printing qualities of microchannels. The as-printed channel sizes reduced by more than 15% compared to the designed values. Two approaches were made in this paper to improve printing qualities. The first one was to redesign channel size in computer-aided design (CAD) model to make the as-printed channel sizes closer to the objective values. Electrochemical polishing (ECP) was then applied as a second way using sulfuric acid solutions. Surface roughness value was reduced by more than 40% after the ECP process.

References

References
1.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Ashman
,
S.
, and
Kandlikar
,
S. G.
,
2006
, “
A Review of Manufacturing Processes for Microchannel Heat Exchanger Fabrication
,”
ASME
Paper No. ICNMM2006-96121.10.1115/ICNMM2006-96121
3.
Zhang
,
X.
,
Tiwari
,
R.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
An Additively Manufactured Metallic Manifold-Microchannel Heat Exchanger for High Temperature Applications
,”
Appl. Therm. Eng.
,
143
, pp.
899
908
.10.1016/j.applthermaleng.2018.08.032
4.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME J. Turbomach.
,
140
(
2
), p.
021002
.10.1115/1.4038180
5.
Min
,
Z.
,
Huang
,
G.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Experimental Investigation on Additively Manufactured Transpiration and Film Cooling Structures
,”
ASME J. Turbomach.
,
141
(
3
), p.
031009
.10.1115/1.4042009
6.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
,
Huang
,
J.
, and
Zhu
,
W.
,
2015
, “
Microstructure and Mechanical Properties of Aluminium Alloy Cellular Lattice Structures Manufactured by Direct Metal Laser Sintering
,”
Mater. Sci. Eng.: A
,
628
, pp.
238
246
.10.1016/j.msea.2015.01.063
7.
Crupi
,
V.
,
Kara
,
E.
,
Epasto
,
G.
,
Guglielmino
,
E.
, and
Aykul
,
H.
,
2017
, “
Static Behavior of Lattice Structures Produced Via Direct Metal Laser Sintering Technology
,”
Mater. Des.
,
135
, pp.
246
256
.10.1016/j.matdes.2017.09.003
8.
Ghosh
,
S. K.
, and
Saha
,
P.
,
2011
, “
Crack and Wear Behavior of SiC Particulate Reinforced Aluminium Based Metal Matrix Composite Fabricated by Direct Metal Laser Sintering Process
,”
Mater. Des.
,
32
(
1
), pp.
139
145
.10.1016/j.matdes.2010.06.020
9.
Manfredi
,
D.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Ambrosio
,
E. P.
,
Biamino
,
S.
,
Ugues
,
D.
,
Pavese
,
M.
, and
Fino
,
P.
,
2014
, “
Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs)
,”
Light Metal Alloys Applications
,
IntechOpen
,
London, UK
.10.5772/58534
10.
Attar
,
H.
,
Ehtemam-Haghighi
,
S.
,
Kent
,
D.
, and
Dargusch
,
M. S.
,
2018
, “
Recent Developments and Opportunities in Additive Manufacturing of Titanium-Based Matrix Composites: A Review
,”
Int. J. Mach. Tools Manuf.
,
133
, pp.
85
102
.10.1016/j.ijmachtools.2018.06.003
11.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
12.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2743
2751
.10.1007/s00170-012-4688-9
13.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.10.1016/j.jmatprotec.2012.11.011
14.
Pyka
,
G.
,
Burakowski
,
A.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Van Bael
,
S.
,
Schrooten
,
J.
, and
Wevers
,
M.
,
2012
, “
Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing
,”
Adv. Eng. Mater.
,
14
(
6
), pp.
363
370
.10.1002/adem.201100344
15.
Van Bael
,
S.
,
Kerckhofs
,
G.
,
Moesen
,
M.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Kruth
,
J.-P.
,
2011
, “
Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti6Al4V Porous Structures
,”
Mater. Sci. Eng.: A
,
528
(
24
), pp.
7423
7431
.10.1016/j.msea.2011.06.045
16.
Kerckhofs
,
G.
,
Pyka
,
G.
,
Moesen
,
M.
,
Van Bael
,
S.
,
Schrooten
,
J.
, and
Wevers
,
M.
,
2013
, “
High-Resolution Microfocus X-Ray Computed Tomography for 3D Surface Roughness Measurements of Additive Manufactured Porous Materials
,”
Adv. Eng. Mater.
,
15
(
3
), pp.
153
158
.10.1002/adem.201200156
17.
Kim
,
T. B.
,
Yue
,
S.
,
Zhang
,
Z.
,
Jones
,
E.
,
Jones
,
J. R.
, and
Lee
,
P. D.
,
2014
, “
Additive Manufactured Porous Titanium Structures: Through-Process Quantification of Pore and Strut Networks
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2706
2715
.10.1016/j.jmatprotec.2014.05.006
18.
Karme
,
A.
,
Kallonen
,
A.
,
Matilainen
,
V.-P.
,
Piili
,
H.
, and
Salminen
,
A.
,
2015
, “
Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing
,”
Phys. Procedia
,
78
, pp.
347
356
.10.1016/j.phpro.2015.11.049
19.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.10.1115/1.4031071
20.
Berger
,
R. T.
,
1961
, “
The X-or Gamma-Ray Energy Absorption or Transfer Coefficient: Tabulations and Discussion
,”
Radiat. Res.
,
15
(
1
), pp.
1
29
.10.2307/3571063
21.
Deslattes
,
R. D.
,
1969
, “
Estimates of X-Ray Attenuation Coefficients for the Elements and Their Compounds
,”
Acta Crystallogr. Sect. A
,
25
(
1
), pp.
89
93
.10.1107/S0567739469000118
22.
Kruth
,
J. P.
,
Bartscher
,
M.
,
Carmignato
,
S.
,
Schmitt
,
R.
,
De Chiffre
,
L.
, and
Weckenmann
,
A.
,
2011
, “
Computed Tomography for Dimensional Metrology
,”
CIRP Ann.
,
60
(
2
), pp.
821
842
.10.1016/j.cirp.2011.05.006
23.
Goldstein
,
J. I.
,
Newbury
,
D. E.
,
Michael
,
J. R.
,
Ritchie
,
N. W.
,
Scott
,
J. H. J.
, and
Joy
,
D. C.
,
2017
,
Scanning Electron Microscopy and X-Ray Microanalysis
,
Springer
,
New York
.
24.
Reed
,
S. J. B.
,
2005
,
Electron Microprobe Analysis and Scanning Electron Microscopy in Geology
,
Cambridge University Press
,
Cambridge, UK
.
25.
Baicheng
,
Z.
,
Xiaohua
,
L.
,
Jiaming
,
B.
,
Junfeng
,
G.
,
Pan
,
W.
,
Chen-Nan
,
S.
,
Muiling
,
N.
,
Guojun
,
Q.
, and
Jun
,
W.
,
2017
, “
Study of Selective Laser Melting (SLM) Inconel 718 Part Surface Improvement by Electrochemical Polishing
,”
Mater. Des.
,
116
, pp.
531
537
.10.1016/j.matdes.2016.11.103
26.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
27.
Liao
,
P.-S.
,
Chen
,
T.-S.
, and
Chung
,
P.-C.
,
2001
, “
A Fast Algorithm for Multilevel Thresholding
,”
J. Inf. Sci. Eng.
,
17
(
5
), pp.
713
727
. 10.6688/JISE.2001.17.5.1
You do not currently have access to this content.