Abstract

New laminar flame speed experiments have been collected for some kerosene-based liquid fuels: Jet-A, RP-1, and diesel fuel #2. Accurately understanding the combustion characteristics of these, and all kerosene-based fuels in general, is an important step in developing new chemical kinetics mechanisms that can be applied to these fuels. It is well known that the precise composition of these fuels changes from one production batch to the next, leading to significant uncertainty in the mixture average properties. For example, uncertainty in a fuel blend's molecular weight can have a noticeable effect on defining an equivalence ratio for a typical fuel–air mixture, of the order of 15%. Because of these uncertainties, fuel mole fraction, XFUEL, is shown to be a more appropriate parameter for comparison between different batches of fuel. Additionally, a strong linear correlation was detected between the burned-gas Markstein length and the equivalence ratio. This correlation is shown to be useful in determining the acceptability and accuracy of individual data points. Spherically expanding flames were measured over a range of fuel mole fractions corresponding to equivalence ratios of φ = 0.7 to φ = 1.5, at initial conditions of 1 atm and 403 K in the high-temperature, high-pressure (HTHP) constant volume vessel at Texas A&M University. These new results are compared with the limited set of laminar flame speed data currently available in the literature for this fuel.

References

1.
Ji
,
C.
,
Wang
,
Y. L.
, and
Egolfopoulos
,
F. N.
,
2011
, “
Flame Studies of Conventional and Alternative Jet Fuels
,”
J. Propul. Power
,
27
(
4
), pp.
856
863
.10.2514/1.B34105
2.
Edwards
,
J. T.
,
2017
, “
Reference Jet Fuels for Combustion Testing
,”
AIAA
Paper No. 2017-0146.10.2514/6.2017-0146
3.
Keesee
,
C.
,
Guo
,
B.
, and
Petersen
,
E.
,
2019
, “
Laminar Flame Speed Experiments of Alternative Liquid Fuels
,”
ASME J. Eng. Gas Turbines Power
, 142(1), p. 011013.10.1115/1.4045346
4.
Widegren
,
J. A.
, and
Bruno
,
T. J.
,
2008
, “
Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A
,”
Ind. Eng. Chem. Res.
,
47
(
13
), pp.
4342
4348
.10.1021/ie8000666
5.
Andersen
,
P. C.
, and
Bruno
,
T. J.
,
2005
, “
Thermal Decomposition Kinetics of RP-1 Rocket Propellant
,”
Ind. Eng. Chem. Res.
,
44
(
6
), pp.
1670
1676
.10.1021/ie048958g
6.
Edwards
,
T.
, and
Maurice
,
L. Q.
,
2001
, “
Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels
,”
J. Propul. Power
,
17
(
2
), pp.
461
466
.10.2514/2.5765
7.
Singh
,
D.
,
Nishiie
,
T.
, and
Qiao
,
L.
,
2011
, “
Experimental and Kinetic Modeling Study of the Combustion of n-Decane, Jet-A, and S-8 in Laminar Premixed Flames
,”
Combust. Sci. Technol.
,
183
(
10
), pp.
1002
1026
.10.1080/00102202.2011.575420
8.
Kumar
,
K.
,
Sung
,
C.-J.
, and
Hui
,
X.
,
2011
, “
Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels
,”
Fuel
,
90
(
3
), pp.
1004
1011
.10.1016/j.fuel.2010.11.022
9.
Hui
,
X.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Edwards
,
T.
, and
Gardner
,
D.
,
2012
, “
Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels
,”
Fuel
,
98
, pp.
176
182
.10.1016/j.fuel.2012.03.040
10.
Hui
,
X.
, and
Sung
,
C.-J.
,
2013
, “
Laminar Flame Speeds of Transportation-Relevant Hydrocarbons and Jet Fuels at Elevated Temperatures and Pressures
,”
Fuel
,
109
, pp.
191
200
.10.1016/j.fuel.2012.12.084
11.
Kumar
,
K.
, and
Sung
,
C.-J.
,
2007
, “
Laminar Flame Speeds and Extinction Limits of Preheated n-Decane/O2/N2 and n-Dodecane/O2/N2 Mixtures
,”
Combust. Flame
,
151
(
1–2
), pp.
209
224
.10.1016/j.combustflame.2007.05.002
12.
Chong
,
C. T.
, and
Hochgreb
,
S.
,
2011
, “
Measurements of Laminar Flame Speeds of Liquid Fuels: Jet-A1, Diesel, Palm Methyl Esters and Blends Using Particle Imaging Velocimetry (PIV)
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
979
986
.10.1016/j.proci.2010.05.106
13.
Wu
,
Y.
,
Modica
,
V.
,
Yu
,
X.
, and
Grisch
,
F.
,
2018
, “
Experimental Investigation of Laminar Flame Speed Measurement for Kerosene Fuels: Jet A-1, Surrogate Fuel, and Its Pure Components
,”
Energy Fuels
,
32
(
2
), pp.
2332
2343
.10.1021/acs.energyfuels.7b02731
14.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E. G.
,
Sarofim
,
A. F.
,
Granata
,
S.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
399
417
.10.1080/00102200215080
15.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Granata
,
S.
, and
Faravelli
,
T.
,
2005
, “
Wide-Range Kinetic Modeling Study of the Pyrolysis, Partial Oxidation, and Combustion of Heavy n-Alkanes
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
5170
5183
.10.1021/ie049318g
16.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.10.1016/j.pecs.2012.03.004
17.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2014
, “
A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel
,”
Combust. Flame
,
161
(
6
), pp.
1489
1498
.10.1016/j.combustflame.2013.12.015
18.
Kim
,
D.
,
Martz
,
J.
,
Abdul-Nour
,
A.
,
Yu
,
X.
,
Jansons
,
M.
, and
Violi
,
A.
,
2017
, “
A Six-Component Surrogate for Emulating the Physical and Chemical Characteristics of Conventional and Alternative Jet Fuels and Their Blends
,”
Combust. Flame
,
179
, pp.
86
94
.10.1016/j.combustflame.2017.01.025
19.
Kim
,
D.
, and
Violi
,
A.
,
2018
, “
Hydrocarbons for the Next Generation of Jet Fuel Surrogates
,”
Fuel
,
228
, pp.
438
444
.10.1016/j.fuel.2018.04.112
20.
Honnet
,
S.
,
Seshadri
,
K.
,
Niemann
,
U.
, and
Peters
,
N.
,
2009
, “
A Surrogate Fuel for Kerosene
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
485
492
.10.1016/j.proci.2008.06.218
21.
Bikas
,
G.
, and
Peters
,
N.
,
2001
, “
Kinetic Modelling of n-Decane Combustion and Autoignition: Modeling Combustion of n-Decanem
,”
Combust. Flame
,
126
(
1–2
), pp.
1456
1475
.10.1016/S0010-2180(01)00254-1
22.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Santoro
,
R. J.
, and
Litzinger
,
T. A.
,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.10.1016/j.combustflame.2010.07.001
23.
Dooley
,
S.
,
Won
,
S. H.
,
Heyne
,
J.
,
Farouk
,
T. I.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Hui
,
X.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Iyer
,
V.
,
Iyer
,
S.
,
Litzinger
,
T. A.
,
Santoro
,
R. J.
,
Malewicki
,
T.
, and
Brezinsky
,
K.
,
2012
, “
The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena
,”
Combust. Flame
,
159
(
4
), pp.
1444
1466
.10.1016/j.combustflame.2011.11.002
24.
Narayanaswamy
,
K.
,
Pitsch
,
H.
, and
Pepiot
,
P.
,
2016
, “
A Component Library Framework for Deriving Kinetic Mechanisms for Multi-Component Fuel Surrogates: Application for Jet Fuel Surrogates
,”
Combust. Flame
,
165
, pp.
288
309
.10.1016/j.combustflame.2015.12.013
25.
Koniavitis
,
P.
,
Rigopoulos
,
S.
, and
Jones
,
W. P.
,
2018
, “
Reduction of a Detailed Chemical Mechanism for a Kerosene Surrogate Via RCCE-CSP
,”
Combust. Flame
,
194
, pp.
85
106
.10.1016/j.combustflame.2018.04.004
26.
Szymkowicz
,
P. G.
, and
Benajes
,
J.
,
2018
, “
Development of a Diesel Surrogate Fuel Library
,”
Fuel
,
222
, pp.
21
34
.10.1016/j.fuel.2018.01.112
27.
Denman
,
B. M.
,
Munzar
,
J. D.
, and
Bergthorson
,
J. M.
,
2012
, “
An Experimental and Numerical Study of the Laminar Flame Speed of Jet Fuel Surrogate Blends
,”
ASME
Paper No. GT2012-69917.10.1115/GT2012-69917
28.
Narayanaswamy
,
K.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2010
, “
A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species
,”
Combust. Flame
,
157
(
10
), pp.
1879
1898
.10.1016/j.combustflame.2010.07.009
29.
Narayanaswamy
,
K.
,
Pepiot
,
P.
, and
Pitsch
,
H.
,
2014
, “
A Chemical Mechanism for Low to High Temperature Oxidation of n-Dodecane as a Component of Transportation Fuel Surrogates
,”
Combust. Flame
,
161
(
4
), pp.
866
884
.10.1016/j.combustflame.2013.10.012
30.
Narayanaswamy
,
K.
,
Pitsch
,
H.
, and
Pepiot
,
P.
,
2015
, “
A Chemical Mechanism for Low to High Temperature Oxidation of Methylcyclohexane as a Component of Transportation Fuel Surrogates
,”
Combust. Flame
,
162
(
4
), pp.
1193
1213
.10.1016/j.combustflame.2014.10.013
31.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.10.1115/1.4007737
32.
Sikes
,
T.
,
Mannan
,
M. S.
, and
Petersen
,
E. L.
,
2018
, “
An Experimental Study: Laminar Flame Speed Sensitivity From Spherical Flames in Stoichiometric CH4–Air Mixtures
,”
Combust. Sci. Technol.
,
190
(
9
), pp.
1594
1613
.10.1080/00102202.2018.1460365
33.
Chen
,
Z.
,
2011
, “
On the Extraction of Laminar Flame Speed and Markstein Length From Outwardly Propagating Spherical Flames
,”
Combust. Flame
,
158
(
2
), pp.
291
300
.10.1016/j.combustflame.2010.09.001
34.
Monteiro
,
E.
,
Bellenoue
,
M.
,
Sotton
,
J.
,
Moreira
,
N. A.
, and
Malheiro
,
S.
,
2010
, “
Laminar Burning Velocities and Markstein Numbers of Syngas–Air Mixtures
,”
Fuel
,
89
(
8
), pp.
1985
1991
.10.1016/j.fuel.2009.11.008
35.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
(
4
), pp.
771
779
.10.1016/j.combustflame.2009.01.013
36.
Keesee
,
C.
,
2019
, “
Laminar Flame Speed and Markstein Length Measurements of Various Multi-Component Liquid Fuels With Detailed Uncertainty Analysis
,”
Ph.D. thesis
, Texas
A&M University
,
College Station, TX
.https://oaktrust.library.tamu.edu/handle/1969.1/189077
37.
Klingbeil
,
A. E.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2006
, “
Temperature- and Pressure-Dependent Absorption Cross Sections of Gaseous Hydrocarbons at 3.39 μm
,”
Meas. Sci. Technol.
,
17
(
7
), pp.
1950
1957
.10.1088/0957-0233/17/7/038
38.
MacDonald
,
M. E.
,
2012
, “
Decomposition Kinetics of the Rocket Propellant RP-1 and Its Chemical Kinetic Surrogates
,”
Ph.D. dissertation
,
Stanford University
,
Stanford, CA
.https://hanson.stanford.edu/dissertations/MacDonald_2012.pdf
39.
Kang
,
D.
,
Kim
,
D.
,
Kalaskar
,
V.
,
Violi
,
A.
, and
Boehman
,
A. L.
,
2019
, “
Experimental Characterization of Jet Fuels Under Engine Relevant Conditions—Part 1: Effect of Chemical Composition on Autoignition of Conventional and Alternative Jet Fuels
,”
Fuel
,
239
, pp.
1388
1404
.10.1016/j.fuel.2018.10.005
40.
Wang
,
K.
,
Xu
,
R.
,
Parise
,
T.
,
Shao
,
J.
,
Movaghar
,
A.
,
Lee
,
D. J.
,
Park
,
J.-W.
,
Gao
,
Y.
,
Lu
,
T.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
, and
Wang
,
H.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—IV: HyChem Modeling of Combustion Kinetics of a Bio-Derived Jet Fuel and Its Blends With a Conventional Jet A
,”
Combust. Flame
,
198
, pp.
477
489
.10.1016/j.combustflame.2018.07.012
41.
Konnov
,
A. A.
,
Mohammad
,
A.
,
Kishore
,
V. R.
,
Kim
,
N. I.
,
Prathap
,
C.
, and
Kumar
,
S.
,
2018
, “
A Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel+Air Mixtures
,”
Prog. Energy Combust. Sci.
,
68
, pp.
197
267
.10.1016/j.pecs.2018.05.003
You do not currently have access to this content.