Abstract

The accurate simulation of two-phase flow combustion is crucial for the design of aeronautical combustion chambers. In order to gain insight into complex interactions between a flame, a flow, and a liquid phase, the present work addresses the combustion modeling for the large eddy simulation (LES) of a turbulent spray jet flame. The Eulerian–Lagrangian framework is selected to represent the gaseous and liquid phases, respectively. Chemical processes are described by a reduced mechanism, and turbulent combustion is modeled by the thickened flame model (TFM) coupled to the adaptive mesh refinement (AMR). The TFM-AMR extension on the dispersed phase is successfully validated on a laminar spray flame configuration. Then, the modeling approach is evaluated on the academic turbulent spray burner, providing a good agreement with the experimental data.

References

References
1.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
2.
Legier
,
J.-P.
,
2001
, “
Simulations Numériques Des Instabilités de Combustion Dans Les Foyers Aéronautiques
,” Ph.D. thesis,
INPT
,
Toulouse, France
.
3.
Jaravel
,
T.
,
2016
, “
Prediction of Pollutants in Gas Turbines Using Large Eddy Simulation
,” Ph.D. thesis,
INPT
,
Toulouse, France
.
4.
Mehl
,
C.
,
Liu
,
S.
,
See
,
Y.
, and
Colin
,
O.
,
2018
, “
LES of a Stratified Turbulent Burner With a Thickened Flame Model Coupled to Adaptive Mesh Refinement and Detailed Chemistry
,”
AIAA
Paper No. 2018-4563.10.2514/6.2018-4563
5.
Verdier
,
A.
,
2017
, “
Experimental Study of Dilute Spray Combustion
,”
Ph.D. thesis
,
INSA Rouen Normandie
,
Saint-Étienne-du-Rouvray, France
.https://www.researchgate.net/publication/325956239_Experimental_study_of_dilute_spray_combustion
6.
Noh
,
D.
,
Gallot-Lavallée
,
S.
,
Jones
,
W. P.
, and
Navarro-Martinez
,
S.
,
2018
, “
Comparison of Droplet Evaporation Models for a Turbulent, Non-Swirling Jet Flame With a Polydisperse Droplet Distribution
,”
Combust. Flame
,
194
, pp.
135
151
.10.1016/j.combustflame.2018.04.018
7.
Sitte
,
P.
, and
Mastorakos
,
E.
,
2019
, “
Large Eddy Simulation of a Spray Jet Flame Using Doubly Conditional Moment Closure
,”
Combust. Flame
,
199
pp.
309
323
.10.1016/j.combustflame.2018.08.026
8.
Chatelier
,
A.
,
2019
, “
Modeling Questions for Numerical Simulations of Aeronautical Combustors
,”
Ph.D. thesis
,
University of Paris-Saclay
,
Saint-Aubin, France
. https://tel.archives-ouvertes.fr/tel-02294255
9.
Shum-Kivan
,
F.
,
2017
, “
Large Eddy Simulation of Spray Flames and Modelling of Non-Premixed Combustion
,”
Ph.D. thesis
,
INPT
,
Toulouse, France
.https://www.researchgate.net/publication/229037642_Large_eddy_simulation_of_premixed_and_non-premixed_combustion
10.
Mulla
,
I. A.
,
Godard
,
G.
,
Cabot
,
G.
,
Grisch
,
F.
, and
Renou
,
B.
,
2019
, “
Quantitative Imaging of Nitric Oxide Concentration in a Turbulent n -Heptane Spray Flame
,”
Combust. Flame
,
203
, pp.
217
229
.10.1016/j.combustflame.2019.02.005
11.
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1977
, “
A Numerical Method for Two-Dimensional Unsteady Reacting Flows
,”
Int. Symp. Combust.
,
16
(
1
), pp.
1503
1515
.10.1016/S0082-0784(77)80432-3
12.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
13.
Paulhiac
,
D.
,
2015
, “
Modeling of Spray Combustion in an Aeronautical Burner
,”
Ph.D. thesis
,
CERFACS
,
Toulouse, France
.https://www.researchgate.net/publication/281657583_MODELING_OF_SPRAY_COMBUSTION_IN_AN_AERONAUTICAL_BURNER
14.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
,
CONVERGE 2.4 Manual
,
Convergent Science
,
Madison, WI
.
15.
Liu
,
A.
,
Mather
,
D.
, and
Reitz
,
R.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Technical Paper No. 930072.10.4271/930072
16.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
(
2
), pp.
292
301
.10.1016/j.combustflame.2008.11.009
17.
Raju
,
M.
,
Wang
,
M.
,
Senecal
,
P. K.
,
Som
,
S.
, and
Longman
,
D. E.
,
2013
, “
A Reduced Diesel Surrogate Mechanism for Compression Ignition Engine Applications
,”
ASME
Paper No. ICEF2012-92045.10.1115/ICEF2012-92045
18.
Davis
,
S.
, and
Law
,
C.
,
1998
, “
Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
(
1–6
), pp.
427
449
.10.1080/00102209808915781
19.
Kumar
,
K.
,
Freeh
,
J.
,
Sung
,
C.
, and
Huang
,
Y.
,
2007
, “
Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures
,”
J. Propul. Power
,
23
(
2
), pp.
428
436
.10.2514/1.24391
20.
van Lipzig
,
J.
,
Nilsson
,
E.
,
de Goey
,
L.
, and
Konnov
,
A.
,
2011
, “
Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures
,”
Fuel
,
90
(
8
), pp.
2773
2781
.10.1016/j.fuel.2011.04.029
21.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
,
Converge 2.4
,
Convergent Science
,
Madison, WI
.
22.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
23.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
24.
Neophytou
,
A.
, and
Mastorakos
,
E.
,
2009
, “
Simulations of Laminar Flame Propagation in Droplet Mists
,”
Combust. Flame
,
156
(
8
), pp.
1627
1640
.10.1016/j.combustflame.2009.02.014
25.
Filho
,
F. L. S.
,
Kuenne
,
G.
,
Chrigui
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2017
, “
A Consistent Artificially Thickened Flame Approach for Spray Combustion Using Les and the Fgm Chemistry Reduction Method: Validation in Lean Partially Pre-Vaporized Flames
,”
Combust. Flame
,
184
, pp.
68
89
.10.1016/j.combustflame.2017.05.031
26.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
27.
Guedot
,
L.
,
2015
, “
Development of Numerical Methods for the Characterization of Large Scale Structures in Aeronautical Swirl Burners. application to Multi-Points Injectors
,”
Ph.D. thesis
,
INSA Rouen Normandie
,
Saint-Étienne-du-Rouvray, France
.https://www.researchgate.net/publication/301584634_Development_of_numerical_methods_for_the_characterization_of_large_scale_structures_in_aeronautical_swirl_burners_application_to_mult
28.
Yamashita
,
H.
,
Shimad
,
M.
, and
Takeno
,
T.
,
1996
, “
A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
27
34
.10.1016/S0082-0784(96)80196-2
29.
Mulla
,
I. A.
, and
Renou
,
B.
,
2019
, “
Simultaneous Imaging of Soot Volume Fraction, Pah, and oh in a Turbulent n-Heptane Spray Flame
,”
Combust. Flame
,
209
, pp.
452
466
.10.1016/j.combustflame.2019.08.012
30.
Shum-Kivan
,
F.
,
Santiago
,
J. M.
,
Verdier
,
A.
,
Riber
,
E.
,
Renou
,
B.
,
Cabot
,
G.
, and
Cuenot
,
B.
,
2017
, “
Experimental and Numerical Analysis of a Turbulent Spray Flame Structure
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2567
2575
.10.1016/j.proci.2016.06.039
You do not currently have access to this content.