Abstract

Closed Joule–Brayton cycles operating with carbon dioxide in supercritical conditions (sCO2) are nowadays collecting a significant scientific interest, due to their high potential efficiency, the compactness of their components, and the flexibility that makes them suitable to exploit diverse energy sources. However, the technical implementation of sCO2 power systems introduces new challenges related to the design and operation of the components. The compressor, in particular, operates in a thermodynamic condition close to the critical point, whereby the fluid exhibits significant non-ideal gas effects and is prone to phase change in the intake region of the machine. These new challenges require novel design concepts and strategies, as well as proper tools to achieve reliable predictions. In this study, we consider an exemplary sCO2 power cycle with the main compressor operating in proximity to the critical point, with an intake entropy level of the fluid lower than the critical value. In this condition, the phase change occurs as evaporation/flashing, thus resembling cavitation phenomena observed in liquid pumps, even though with specific issues associated with compressibility effects occurring in both the phases. The flow configuration is therefore highly nonconventional and demands the development of proper tools for fluid and flow modeling, which are instrumental for the compressor design. The paper discusses the modeling issues from the thermodynamic perspective, then highlighting their implications on compressor aerodynamics. We propose tailored models to account for the effect of the phase change in 0D mean-line design tools as well as in fully three-dimensional (3D) computational fluid-dynamic (CFD) simulations: the former was previously validated for sCO2 compressors, the latter is validated in this paper against experiments of compressible flows of supercritical sCO2 in nozzles. In this way, a strategy of investigation is built-up as a combination of mean-line tools, industrial design experience, and CFD for detailed flow analysis. The investigation reveals that the potential onset of the phase change might alter significantly the performance and operation of the compressor, both in design and in off-design conditions, according to three main mechanisms: incidence effect, front-loading, and channel blockage.

References

References
1.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sanchez
,
D.
, and
Martinez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.10.1016/j.apenergy.2017.02.048
2.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing, Sawston, UK
.
3.
Ameli
,
A.
,
Afzalifar
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2018
, “
Effects of Real Gas Model Accuracy and Operating Conditions on Supercritical CO2 Compressor Performance and Flow Field
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062603
.10.1115/1.4038552
4.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.10.1115/1.4029616
5.
Allison
,
T. C.
, and
McClung
,
A.
,
2019
, “
Limiting Inlet Conditions for Phase Change Avoidance in Supercritical CO2 Compressors
,”
ASME
Paper No. GT2019-90409.10.1115/GT2019-90409
6.
Lettier
,
C.
,
Paxson
,
D.
,
Spakovszky
,
Z.
, and
Bryanston-Cross
,
P.
,
2018
, “
Characterization of Nonequilibrium Condensation of Supercritical Carbon Dioxide in a de Laval Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041701
.10.1115/1.4038082
7.
Noall
,
J. S.
, and
Pasch
,
J. J.
,
2014
, “
Achievable Efficiency and Stability of Supercritical CO2 Compression Systems
,”
Supercritical CO2 Power Cycle Symposium
,
Pittsburgh, PA
, Sept. 9–10.https://www.semanticscholar.org/paper/Achievable-Efficiency-and-Stability-of-CO2-Systems-Noall-Nichols/4247c8d427913891c4f5097aeed73a384bb2d04a
8.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.10.1115/1.4007196
9.
Ameli
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2018
, “
Numerical Investigation of the Flow Behavior Inside a Supercritical CO2 Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122604
.10.1115/1.4040577
10.
Hosangadi
,
A.
,
Liu
,
Z.
,
Weathers
,
T.
,
Ahuja
,
V.
, and
Busby
,
J.
,
2019
, “
Modeling Multiphase Effects in CO2 Compressors at Subcritical Inlet Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081005
.10.1115/1.4042975
11.
Brinckman
,
K.
,
Hosangadi
,
A.
,
Liu
,
Z.
, and
Weathers
,
T.
,
2019
, “
Numerical Simulation of Non-Equilibrium Condensation in Supercritical CO2 Compressors
,”
ASME
Paper No. GT2019-90497.10.1115/GT2019-90497
12.
Wright
,
S.
,
Radel
,
R.
,
Vernon
,
M.
,
Rochau
,
G.
, and
Pickard
,
P.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
Sandia, Albuquerque, NM
, Report No.
SAND2010-0171
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2010/100171.pdf
13.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple‐Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
14.
Lemmon
,
E. W.
,
Bell
,
H. B.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0,” National Institute of Standards and Technology, Gaithersburg, MD.
15.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Perfomance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach.
,
142
(
7
), p.
071001
.10.1115/1.4046182
16.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
17.
GuidottiTapinassi
,
E.
,
Toni
,
L.
,
Bianchi
,
L.
,
Gaetani
,
L. P.
, and
Persico
,
G.
,
2011
, “
Experimental and Numerical Analysis of the Flow Field in the Impeller of a Centrifugal Compressor Stage at Design Point
,”
ASME
Paper No. GT2011-45036.10.1115/GT2011-45036
18.
Nannan
,
N. R.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2013
, “
On the Fundamental Derivative of Gas Dynamics in the Vapor–Liquid Critical Region of Single-Component Typical Fluids
,”
Fluid Phase Equilib.
,
337
, pp.
259
273
.10.1016/j.fluid.2012.09.017
19.
Nakagawa
,
M.
,
Berana
,
M. S.
, and
Kishine
,
A.
,
2009
, “
Supersonic Two-Phase Flow of CO2 Through Converging–Diverging Nozzles for the Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
32
(
6
), pp.
1195
1202
.10.1016/j.ijrefrig.2009.01.015
20.
Banasiak
,
K.
, and
Hafner
,
A.
,
2013
, “
Mathematical Modelling of Supersonic Two-Phase R744 Flows Through Converging–Diverging Nozzles: The Effects of Phase Transition Models
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
635
643
.10.1016/j.applthermaleng.2012.10.005
21.
Gaetani
,
P.
,
Persico
,
G.
,
Mora
,
A.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2012
, “
Impeller-Vaned Diffuser Interaction in a Centrifugal Compressor at Off Design Conditions
,”
ASME J. Turbomach.
,
134
(
6
), p.
061034
.10.1115/1.4006295
22.
Galvas
,
M. R.
,
1973
, “
FORTRAN Program for Predicting Off-Design Performance of Centrifugal Compressors
,” NASA, Washington, DC, Report No.
TN D-7487
.https://searchworks.stanford.edu/view/8604827
23.
Jansen
,
W.
,
1967
, “
A Method for Calculating the Flow in a Centrifugal Compressor Impeller When Entropy Gradients Are Present
,”
Royal Society Conference on Internal Aerodynamics (Turbomachinery)
, Cambridge, UK, July 19–21.
24.
Rodgers
,
C.
,
1978
, “
A Diffusion Factor Correlation for Centrifugal Impeller Stalling
,”
ASME J. Eng. Power
,
100
(
4
), pp.
592
601
.10.1115/1.3446403
25.
Johnson
,
J. P. D. J. R. C.
,
1966
, “
Losses in Vaneless Diffusers of Centrifugal Compressors and Pumps. Analysis, Experiment, and Design
,”
ASME J. Eng. Power
,
88
, pp.
49
62
.10.1115/1.3678477
26.
Aungier
,
R.
,
1999
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press, New York
.
27.
Senoo
,
Y.
, and
Kinoshita
,
Y.
,
1977
, “
Influence of Inlet Flow Conditions and Geometries of Centrifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
98
102
.10.1115/1.3448577
28.
De Lorenzo
,
M.
,
Lafon
,
P.
,
Seynhaeve
,
J. M.
, and
Bartosiewicz
,
Y.
,
2017
, “
Benchmark of Delayed Equilibrium Model (DEM) and Classic Two-Phase Critical Flow Models Against Experimental Data
,”
Int. J. Multiphase Flow
,
92
, pp.
112
130
.10.1016/j.ijmultiphaseflow.2017.03.004
29.
Lackmè
,
C.
,
1979
, “
Incompleteness of the Flashing of a Supersaturated Liquid and Sonic Ejection of the Produced Phases
,”
Int. J. Multiphase Flow
,
5
, pp.
131
141
.10.1016/0301-9322(79)90041-7
30.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flows
,
Cambridge University Press
, Cambridge, UK.
This content is only available via PDF.
You do not currently have access to this content.