Abstract

A confluence of technology development, policy support, and industry investment trends is accelerating the pace of Hydrogen (H2) technology demonstrations, increasing the likelihood of power sector impacts. In preparation for a large scale power sector shift toward decarbonization for a low carbon future, several major power equipment manufacturers are developing gas turbines that can operate on a high H2 volume fuel. Many have H2 capable systems now that range from 5% to 100% H2. Units with 100% H2 capabilities are either using a diffusion burner or some version of a wet low emissions (WLE) burner. Most dry low emission/dry low NOx (DLE/DLN) technologies are currently limited to approximately 60% H2 or less. Therefore, research is currently underway to develop low NOx gas turbine combustion systems with improved Hydrogen capability. This paper provides an overview of the technical challenges of Hydrogen combustion and the probable technologies with which the manufacturers will respond.

References

1.
U.S. Energy Information Administration
,
2019
, “
Electricity explained: Electricity in the United States
,” U.S. Energy Information Administration, accessed Dec. 24, 2020, www.eia.gov/energyexplained/index.php?page=electricity_in_the_united_states
2.
TMI Staff & Contributors,
2018
, “
Worldwide Gas Turbine Forecast
,” Turbomachinery International, Iselin, NJ, Accessed Dec. 1, 2019, https://www.turbo machinerymag.com/worldwide-gas-turbine-forecast-2/
3.
U.S. Energy Information Administration
,
2019
, “
February 2019: Monthly Energy Review
,” U.S. Energy Information Administration, Washington, DC, Accessed Dec. 1, 2019, https://www.eia.gov/totalenergy/data/monthly/archive/00351902.pdf
4.
Moliere
,
M.
,
2002
, “
Benefiting From the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities
,”
ASME
Paper No. GT-2002-30017. 10.1115/GT-2002-30017
5.
Lieuwen
,
Y.
, and
Yetter
,
2009
, “
Synthesis Gas Combustion: Fundamentals and Applications
,”
CRC Press
,
Boca Raton, FL
.
6.
National Energy Technology Laboratory,
2019
, “
Advanced Turbines
,”
National Energy Technology Laboratory
,
Pittsburgh, PA
, accessed Dec. 1, 2019, https://www.netl.doe.gov/coal/turbines
7.
Louthan
,
M. R.
,
Caskey
,
G. R.
,
Donovan
,
J. A.
, and
Rawl
,
D. E.
,
1972
, “
Hydrogen Embrittlement of Metals
,”
Mater. Sci. Eng.
,
10
, pp.
357
368
.10.1016/0025-5416(72)90109-7
8.
Schefer
,
R.
,
Kulatilaka
,
W.
,
Patterson
,
B.
, and
Settersten
,
T.
,
2009
, “
Visible Emission of Hydrogen Flames
,”
Combust. Flame
,
156
(
6
), pp.
1234
1241
.10.1016/j.combustflame.2009.01.011
9.
EPRI
,
2017
, “
Combustion Dynamics Reference Guide
,”
EPRI
,
Palo Alto, CA
.
10.
Patel
,
S.
,
2019
, “
High-Volume Hydrogen Gas Turbines Take Shape
,”
Power Magazine
,
San Antonio, TX
, accessed Dec. 1, 2019. www.powermag.com/high-volume-hydrogen-gas-turbines-take-shape/
11.
General Electric
,
2018
, “
Fuel Flexible Gas Turbines as Enablers for a Low or Reduced Carbon Energy Ecosystem
,”
General Electric
,
Schenectady, NY
, Report No. GEA33861.
12.
Patel
,
S.
,
2019
, “
The Power Interview: GE Unleashing a Hydrogen Gas Power Future
,” Power Magazine, San Antonio, TX, Accessed Dec. 1, 2019, www.powermag.com/the-power-interview-ge-unleashing-a-hydrogen-gas-power-future/
13.
Noble
,
D. R.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
,
2006
, “
Syngas Mixture Composition Effects Upon Flashback and Blowout
,”
ASME
Paper No. GT2006-90470. 10.1115/GT2006-90470
14.
Lieuwen
,
T.
,
McDonnell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2006
, “
Fuel Flexibility Influences on Premixed Combustor Blowout
,”
ASME
Paper No. GT2006-90770. 10.1115/GT2006-90770
15.
Argonne National Laboratory
,
2013
, “
Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model, Version 1: Input Fuel Specifications
,” Argonne National Laboratory, Chicago, IL.
16.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1-20 Atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p. 011504. 10.1115/1.4025210
17.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
18.
Kurata, Iki, Inoue, Matsunuma, Tsujimura, Furutani, Kawano, Arai, Okafor, Hayakawa, and Kobayashi
,
2019
, “
Correlation Between Unburnt Ammonia and N2O Emissions From Ammonia-Fired Gas Turbine Combustor
,”
Proceedings of the International Gas Turbine Congress,
Tokyo
,
Nov. 17–22, 2019
, Paper No. IGTC-2019-198.
19.
Valera-Medina
,
A.
,
Morris
,
S.
,
Runyon
,
J.
,
Pugh
,
D. G.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Procedia
,
75
, pp.
118
123
.10.1016/j.egypro.2015.07.205
20.
Morehouse
,
C.
,
2019
, “
GE: Hydrogen Trumps CCS in Preserving Gas Turbines in a Carbon-Free Grid
,” Utility Dive, Washington, DC, accessed Dec. 1, 2019, www.utilitydive.com/news/ge-hydrogen-trumps-ccs-in-preserving-gas-turbines-in-a-carbon-free-grid/556585/
21.
Sauro Pasini,
2010
, “
Fusina: Achieving Low NOx From Hydrogen Combined-Cycle Power
,”
Power Eng. Int. (PEi)
,
18
(
9
), epub.https://www.powerengineeringint.com/world-regions/europe/fusina-achieving-low-nox-from-hydrogen-combined-cycle-power/
22.
GE
,
2019
, “
Advanced Multi-Tube Mixer Combustion for 65% Efficiency
,” NETL, Pittsburgh, PA, accessed Dec. 1, 2019, www.netl.doe.gov/project-information?k=FE0023965
23.
York
,
W.
,
Hughes
,
M.
,
Berry
,
J.
,
Russell
,
T.
,
Lau
,
Y. C.
,
Liu
,
S.
,
Arnett
,
M.
,
Peck
,
A.
,
Tralshawala
,
N.
,
Weber
,
J.
,
Benjamin
,
M.
,
Iduate
,
M.
,
Kittleson
,
J.
,
Garcia-Crespo
,
A.
,
Delvaux
,
J.
,
Casanova
,
F.
,
Lacy
,
B.
,
Brzek
,
B.
,
Wolfe
,
C.
,
Palafox
,
P.
,
Ding
,
B.
,
Badding
,
B.
,
McDuffie
,
D.
, and
Zemsky
,
C.
,
2015
, “
Advanced IGCC/Hydrogen Gas Turbine Development
,” U.S. DOE Office of Scientific and Technical Information, Oak Ridge, TN, accessed Dec. 1, 2019, www.osti.gov/servlets/purl/1261809
24.
General Electric
,
2017
, “
DLN2.6e Product Technology
,” General Electric, New York, Report No. GEA33140.
25.
Vandervort
,
2018
, “
Advancements in H Class Gas Turbines and Combined Cycle Power Plants
,”
ASME
Paper No. GT2018-76911. 10.1115/GT2018-76911
26.
EPRI
,
2019
, “
Technology Insights Brief: Hydrogen-Capable Gas Turbines for Deep Decarbonization
,” EPRI, Palo Alto, CA, Report No. 3002017544.
27.
Vandervort
,
C.
,
Leach
,
D.
,
Walker
,
D.
, and
Sasser
,
J.
,
2019
, “
Commercialization and Fleet Experience of the 7/9HA Gas Turbine Combined Cycle
,”
ASME
Paper No. GT2019-91594. 10.1115/GT2019-91594
28.
Siemens
,
AG
,
2019
, “
Hydrogen Combustion in Siemens Gas Turbines: Sales Information v 3.0
,” Orlando, FL.
29.
Foelber
,
D.,
2020
, “
Siemens Works Toward Decarbonization at Scale
,”
Gas Compression Mag.
, 5(1), pp.
20
23
.
30.
Marra
,
J.
,
2015
, “
Advanced Hydrogen Turbine Development. Final Technical Report
,” Siemens Energy, Inc., Orlando, FL, Report No. DOE-SEI-42644, accessed Dec. 1, 2019, www.osti.gov/servlets/purl/1261639
31.
Wiebe and Fox
,
2013
, “
Combustor Assembly in a Gas Turbine Engine
,” Siemens Energy, Orlando, FL, Patent U.S. 8,375,726 B2.
32.
Wiebe and Fox
,
2015
, “
Fuel Nozzle Assembly for Use as Structural Support for a Duct Structure in a Combustor of a Gas Turbine Engine
,” Siemens Energy, Orlando, FL, Patent U.S. 8,991,192 B2.
33.
Asai
,
T.
,
Dodo
,
S.
,
Karishuku
,
M.
,
Yagi
,
N.
,
Akiyama
,
Y.
, and
Hayashi
,
A.
,
2015
, “
Part Load Operation of a Multiple-Injection Dry Low NOx Combustor on Hydrogen-Rich Syngas Fuel in an IGCC Pilot Plant
,”
ASME
Paper No. GT2015-42312. 10.11115/GT2015-42312
34.
Asai, Miura, Matsubara, Akiyama, Karishuku, Dodo, Okazaki, and Tanimura
,
2016
, “
Development of Gas Turbine Combustors for Fuel Flexibility
,”
8th International Gas Turbine Conference
in The Future of Gas Turbine Technology, Brussel, Belgium, Oct. 12–13, aper No. 76-IGTC16.
35.
Robb
,
D.
,
2019
, “
Fuel Switching
,”
Turbomachinery International
,
Iselin, NJ
.
36.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798. 10.1115/GT2019-90798
37.
Saitoh
,
K.
,
2019
, “
MHPS Gas Turbine Technologies and Strategies for a Low-Carbon Society With Hydrogen-Fired Combustion
,”
KEPCO GT Conference
, Daejeon, South Korea, Presentation, June 2019.
38.
MHPS
,
2019
, “
Hydrogen Power Generation Handbook
,”
MHPS
, Japan, accessed Dec. 1, 2019, www.mhps.com/catalogue/pdf/mhps_hydrogen_en.pdf
39.
Ansaldo Energia
,
2019
, “
Time to Face Our World's Biggest Challenge
,” Ansaldo Energia, Italy, accessed Dec. 1, 2019. https://www.ansaldoenergia.com/PublishingImages/Idrogeno/Ansaldo-Energia-H2.pdf
40.
Walton
,
R.
,
2019
, “
Bloomberg Commits $500M to Phasing Out Coal, Halting New Gas Plants
,” Utility Dive, Washington, DC, accessed Dec. 1, 2019, www.utilitydive.com/news/bloomberg-commits-500m-to-phasing-out-coal-halting-new-gas-plants/556430/
You do not currently have access to this content.