Abstract

The dynamic behavior of bladed disks in resonance crossing has been intensively investigated in the community of turbomachinery, addressing the attention to (1) the transient-type response that appear when the resonance is crossed with a finite sweep rate and (2) the localization of the vibration in the disk due to the blade mistuning. In real conditions, the two mentioned effects coexist and can interact in a complex manner. This paper investigates the problem by means of analytic solutions obtained through asymptotic expansions, as well as numerical simulations. The mechanical system is assumed as simple as possible: a 2DOF linear system defined through the three parameters: damping ratio ξ, frequency mistuning Δ, rotor acceleration Ω̇. The analytic solutions are calculated through the multiple-scale method.

References

1.
Lewis
,
F. M.
,
1932
, “
Vibration During Acceleration Through a Critical Speed
,” Trans.
ASME
,
54
(
3
), pp.
253
261
.
2.
Markert
,
R.
, and
Seidler
,
M.
,
2001
, “
Analytically Based Estimation of the Maximum Amplitude During Passage Through Resonance
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1975
1992
.10.1016/S0020-7683(00)00147-5
3.
Ayers
,
J. P.
,
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2006
, “
A Reduced-Order Model for Transient Analysis of Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
128
(
3
), pp.
466
473
.10.1115/1.2185675
4.
Hackenberg
,
H.
, and
Hartung
,
A.
,
2016
, “
An Approach for Estimating the Effect of Transient Sweep Through a Resonance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
082502
.10.1115/1.4032664
5.
Carassale
,
L.
,
Marrè-Brunenghi
,
M.
, and
Patrone
,
S.
,
2018
, “
Wavelet-Based Identification of Rotor Blades in Passage-Through-Resonance Tests
,”
Mech. Syst. Signal Process.
,
98
, pp.
124
138
.10.1016/j.ymssp.2017.04.023
6.
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Maximum Amplification of Blade Response Due to Mistuning: Localization and Mode Shape Aspects of the Worst Disks
,”
ASME J. Turbomach.
,
125
(
3
), pp.
442
454
.10.1115/1.1506958
7.
Sinha
,
A.
,
2017
,
Vibration of Nearly Periodic Structures and Mistuned Bladed Rotors
,
Cambridge University Press
,
Cambridge, UK
.
8.
Whitehead
,
D.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
9.
Martel
,
C.
, and
Corral
,
R.
,
2008
, “
Asymptotic Description of Maximum Mistuning Amplification of Bladed Disk Forced Response
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022506
.10.1115/1.2968868
10.
Kaneko
,
Y.
,
2013
, “
Study on Transient Vibration of Mistuned Bladed Disk Passing Through Resonance
,”
ASME
Paper No. GT2013-94052
. 10.1115/GT2013-94052
11.
Bonhage
,
M.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2015
, “
Transient Amplitude Amplification of Mistuned Blisks
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112502
.10.1115/1.4030278
12.
Siewert
,
C.
, and
Stüer
,
H.
,
2016
, “
Transient Forced Response Analysis of Mistuned Steam Turbine Blades During Startup and Coastdown
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012501
.10.1115/1.4034151
13.
Bonhage
,
M.
,
Adler
,
J. T.
,
Kolhoff
,
C.
,
Hentschel
,
O.
,
Schlesier
,
K.-D.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2018
, “
Transient Amplitude Amplification of Mistuned Structures: An Experimental Validation
,”
J. Sound Vib.
,
436
, pp.
236
252
.10.1016/j.jsv.2018.07.031
14.
Schlesier
,
K.-D.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2018
, “
Investigations on Transient Amplitude Amplification by Applying Intentional Mistuning
,”;
ASME
Paper No. GT2018-75514
.10.1115/GT2018-75514
15.
Willeke
,
S.
,
Schwerdt
,
L.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2018
, “
Intentional Response Reduction by Harmonic Mistuning of Bladed Disks With Aerodynamic Damping
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121010
.10.1115/1.4040898
16.
Bender
,
C. M.
, and
Orszag
,
S. A.
,
1999
,
Advanced Mathematical Methods for Scientists and Engineers: I: Asymptotic Methods and Perturbation Theory
,
Springer
,
New York
.https://www.springer.com/gp/book/9780387989310
17.
Kevorkian
,
J. K.
, and
Cole
,
J. D.
,
1996
,
Multiple Scale and Singular Perturbation Methods
,
Springer-Verlag
,
New York
.
18.
Abramovitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions
,
Dover Publications
,
New York
.
You do not currently have access to this content.