Abstract

At present, the challenges related to energy market force gas turbine owners to improve the reliability and availability of gas turbine engines, especially in the ever competitive Oil and Gas sector. Gas turbine trip leads to business interruption and also reduces equipment remaining useful life. Thus, the identification of symptoms of trips allows the prediction of their occurrence and avoids further damages and costs. Gas turbine transients are tracked by gas turbine operators while they occur, but a database including the complete details of past events for many fleets of engines is not always available. Therefore, a methodology aimed at classifying transients into clusters that identify the type of event (e.g., normal shutdown or trip) is required. Clustering is a data mining technique that addresses the scope of partitioning multivariate time series (MTS) into a given number of homogeneous and separated groups. Thus, the multivariate time series belonging to the same cluster are expected to be very similar to each other. This paper presents a structured methodology composed of a subsequent matching algorithm, a featured-based clustering approach exploiting the unsupervised fuzzy C-means algorithm and a procedure that assigns a label to each cluster for classification purposes. The methodology is applied to a real-word case-study that includes transients acquired from a fleet of Siemens gas turbines in operation during 3 years. The results obtained by using heterogeneous datasets including six measured variables allowed values of Precision, Recall and Accuracy higher than 90% in almost all cases.

References

1.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Abdul Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
(
2017
), pp.
122
144
.10.1016/j.apenergy.2017.04.048
2.
Chiang
,
L.
,
Lu
,
B.
, and
Castillo
,
I.
,
2017
, “
Big Data Analytics in Chemical Engineering
,”
Annu. Rev. Chem. Biomol. Eng.
,
8
(
1
), pp.
63
85
.10.1146/annurev-chembioeng-060816-101555
3.
Koseleva
,
N.
, and
Ropaite
,
G.
,
2017
, “
Big Data in Building Energy Efficency: Understanding of Big Data and Main Challenges
,”
Procedia Eng.
,
172
, pp.
544
549
.10.1016/j.proeng.2017.02.064
4.
Elsevier
,
2018
, “
Big Data Application in Power Systems
,” R. Arghandeh and Y. Zhou, eds., Elsevier, Amsterdam, The Netherlands.10.1016/C2016-0-00194-8
5.
Cattaneo
,
L.
,
Fumagalli
,
L.
,
Macchi
,
M.
, and
Negri
,
E.
,
2018
, “
Clarifying Data Analytics Concepts for Industrial Engineering
,”
IFAC PapersOnLine
,
51
(
11
), pp.
820
825
.10.1016/j.ifacol.2018.08.440
6.
Elshawi
,
R.
,
Sakr
,
S.
,
Talia
,
D.
, and
Trunfio
,
P.
,
2018
, “
Big Data Systems Meet Machine Learning Challenges: Towards Big Data Science as a Service
,”
Big Data Res.
,
14
, pp.
1
11
.10.1016/j.bdr.2018.04.004
7.
Bagozi
,
A.
,
Bianchini
,
D.
,
De Antonellis
,
V.
,
Garda
,
M.
, and
Marini
,
A.
,
2019
, “
A Relevance-Based Approach for Big Data Exploration
,”
Future Gener. Comput. Syst.
,
101
, pp.
51
69
.10.1016/j.future.2019.05.056
8.
Karlstetter
,
R.
,
Widhopf-Fenk
,
R.
,
Hermann
,
J.
,
Rouwenhorst
,
D.
,
Raoofy
,
A.
,
Trinitis
,
C.
, and
Schulz
,
M.
,
2019
, “
Turning Dynamic Sensor Measurements From Gas Turbines Into Insights: A Big Data Approach
,”
ASME
Paper No. GT2019-91259.10.1115/GT2019-91259
9.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS)
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
32402
.10.1115/1.4037964
10.
Manservigi
,
L.
,
Venturini
,
M.
,
Ceschini
,
G. F.
,
Bechini
,
G.
, and
Losi
,
E.
,
2020
, “
Development and Validation of a General and Robust Methodology for the Detection and Classification of Gas Turbine Sensor Faults
,”
ASME. J. Eng. Gas Turbines Power, 2020
,
142
(
2
), p.
021009
.10.1115/1.4045711
11.
Fayyad
,
U.
,
Piatetsky-Shapiro
,
G.
, and
Smyth
,
P.
,
1996
, “
From Data Mining to Knowledge Discovery in Databases
,”
Am. Assoc. Artif. Intell.
, 17(3), p. 37.10.1609/aimag.v17i3.1230
12.
Witten, I. H., Frank, E., and Hall, M. A.,
2011
,
Data Mining: Practical Machine Learning Tools and Techniques
,
Elsevier, Amsterdam, The Netherlands
, p. 664.10.1016/C2009-0-19715-5
13.
Cucchiara
,
R.
,
Mello
,
P.
,
Piccardi
,
M.
, and
Riguzzi
,
F.
,
2001
, “
An Application of Machine Learning and Statistics to Defect Detection
,”
Intell. Data Anal.
,
5
(
2
), pp.
151
164
.10.3233/IDA-2001-5205
14.
Zhang
,
C.
,
Cao
,
L.
, and
Romagnoli
,
A.
,
2018
, “
On the Feature Engineering of Building Energy Data Mining
,”
Sustainable Cities Soc.
,
39
(
2018
), pp.
508
518
.10.1016/j.scs.2018.02.016
15.
Shaheen
,
M.
, and
Khan
,
M. Z.
,
2016
, “
A Method of Data Mining for Selection of Site for Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
55
(
2016
), pp.
1225
1233
.10.1016/j.rser.2015.04.015
16.
Wandel
,
A. P.
,
2018
, “
Identification of Local Extinction and Prediction of Reignition in a Spark-Ignited Sparse Spray Flame Using Data Mining
,”
Combust. Flame
,
198
(
2018
), pp.
342
355
.10.1016/j.combustflame.2018.09.028
17.
Zhao
,
Y.
,
Tan
,
J.
,
Wang
,
J.
, and
Yang
,
Z.
,
2019
, “
C-Loss Based Extreme Learning Machine for Estimating Power of Small-Scale Turbojet Engine
,”
Aerosp. Sci. Technol.
,
89
(
2019
), pp.
407
419
.10.1016/j.ast.2019.04.023
18.
Guo
,
S.
,
Yu
,
J.
,
Liu
,
X.
,
Wang
,
C.
, and
Jiang
,
Q.
,
2019
, “
A Predicting Model for Properties of Steel Using the Industrial Big Data Based on Machine Learning
,”
Comput. Mater. Sci.
,
160
(
2019
), pp.
95
104
.10.1016/j.commatsci.2018.12.056
19.
Peng
,
B.
,
Bergs
,
T.
,
Schraknepper
,
D.
,
Klocke
,
F.
, and
Dobbeler
,
B.
,
2019
, “
A Hybrid Approach Using Machine Learning to Predict the Cutting Forces Under Consideration of the Tool Wear
,”
Procedia CIRP
,
82
(
2019
), pp.
302
307
.10.1016/j.procir.2019.04.031
20.
Fu
,
T.
,
2011
, “
A Review on Time Series Data Mining
,”
Eng. Appl. Artif. Intell.
,
24
(
1
), pp.
164
181
.10.1016/j.engappai.2010.09.007
21.
Jan
,
B.
,
Farman
,
H.
,
Khan
,
M.
,
Imran
,
M.
,
Islam
,
I.
,
Ahmad
,
A.
,
Ali
,
S.
, and
Jeon
,
G.
,
2019
, “
Deep Learning in Big Data Analytics: A Comparative Study
,”
Comput. Electr. Eng.
,
75
(
2019
), pp.
275
287
.10.1016/j.compeleceng.2017.12.009
22.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
(
2019
), pp.
213
237
.10.1016/j.ymssp.2018.05.050
23.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning for Improvement System Remaining Life Prediction
,”
Procedia CIRP
,
72
(
2018
), pp.
1033
1038
.10.1016/j.procir.2018.03.262
24.
Wu
,
Y.
,
Yuan
,
M.
,
Dong
,
S.
,
Lin
,
L.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
,”
Neurocomputing
,
275
(
2018
), pp.
167
179
.10.1016/j.neucom.2017.05.063
25.
Lu
,
F.
,
Ju
,
H.
, and
Huang
,
J.
,
2016
, “
An Improved Extended Kalman Filter With Inequality Constraints for Gas Turbine Engine Health Monitoring
,”
Aerosp. Sci. Technol.
,
58
, pp.
36
47
.10.1016/j.ast.2016.08.008
26.
Qin
,
S. J.
, and
Chiang
,
L. H.
,
2019
, “
Advances and Opportunities in Machine Learning for Process Data Analytics
,”
Comput. Chem. Eng.
,
126
(
2019
), pp.
465
473
.10.1016/j.compchemeng.2019.04.003
27.
De Giorgi
,
M. G.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2018
, “
A Diagnostics Tool for Aero-Engines Health Monitoring Using Machine Learning Technique
,”
Energy Procedia
,
148
(
2018
), pp.
860
867
.10.1016/j.egypro.2018.08.109
28.
Zhong
,
S.
,
Fu
,
S.
, and
Lin
,
L.
,
2019
, “
A Novel Gas Turbine Fault Diagnosis Method Based on Transfer Learning With CNN
,”
Measurement
,
137
(
2019
), pp.
435
453
.10.1016/j.measurement.2019.01.022
29.
Amozegar
,
M.
, and
Khorasani
,
K.
,
2016
, “
An Ensemble of Dynamic Neural Network Identifiers for Fault Detection and Isolation of Gas Turbine Engines
,”
Neural Networks
,
76
(
2016
), pp.
106
121
.10.1016/j.neunet.2016.01.003
30.
Naderi
,
E.
, and
Khorasani
,
K.
,
2018
, 2018, “
Data-Driven Fault Detection, Isolation and Estimation of Aircraft Gas Turbine Engine Actuator and Sensors
,”
Mech. Syst. Signal Process.
,
100
(
2018
), pp.
415
438
.10.1016/j.ymssp.2017.07.021
31.
Taylor
,
J. V.
,
Conduit
,
B.
,
Dickens
,
A.
,
Hall
,
C.
,
Hillel
,
M.
, and
Miller
,
R. J.
,
2019
, “
Predicting the Operability of Damaged Compressors Using Machine Learning
,”
ASME
Paper No. GT2019-91339.10.1115/GT2019-91339
32.
Wong
,
P. K.
,
Yang
,
Z.
,
Vong
,
C. M.
, and
Zhong
,
J.
,
2014
, “
Real Time Fault Diagnosis for Gas Turbine Generator System Using Extreme Learning Machine
,”
Neurocomputing
,
128
(
2014
), pp.
249
257
.10.1016/j.neucom.2013.03.059
33.
Zhao
,
Y.
,
Huang
,
G.
,
Hu
,
Q.
,
Tan
,
J.
,
Wang
,
J.
, and
Yang
,
Z.
,
2019
, “
Soft Extreme Learning Machine for Fault Detection of Aircraft Engine
,”
Aerosp. Sci. Technol.
,
91
, pp.
70
81
.10.1016/j.ast.2019.05.021
34.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2001
,
Pattern Classification
, 2nd ed.,
Wiley-Interscience Publication
,
New York
.
35.
Aghabozorgi
,
S.
,
Shirkhorshidi
,
A. S.
, and
Wah
,
T. Y.
,
2015
, “
Time-Series Clustering—A Decade Review
,”
Inf. Syst.
,
53
(
2015
), pp.
16
38
.10.1016/j.is.2015.04.007
36.
Liao
,
T. W.
,
2005
, “
Clustering of Time Series Data—A Survey
,”
Pattern Recognit.
,
38
(
2005
), pp.
1857
1874
.10.1016/j.patcog.2005.01.025
37.
Paparrizos
,
J.
, and
Gravano
,
L.
,
2017
, “
Fast and Accurate Time-Series Clustering
,”
ACM Trans. Database Syst. (TODS)
,
42
(
2
), pp.
1
49
.10.1145/3044711
38.
Di Maio
,
F.
,
Zio
,
E.
,
Pecht
,
M.
,
Tse
,
P.
, and
Tsui
,
K.
,
2011
, “
Ensemble of Unsupervised Fuzzy C-Means Classifiers for Clustering Health Status of Oil Sand Pumps
,”
ESREL
, Troyes, France, Sept., pp.
419
427
.10.1201/b11433-60
39.
Baraldi
,
P.
,
Di Maio
,
F.
,
Rigamonti
,
M.
,
Zio
,
E.
, and
Seraoui
,
R.
,
2015
, “
Clustering for Unsupervised Fault Diagnosis in Nuclear Turbine Shut-Down Transients
,”
Mech. Syst. Signal Process.
,
58–59
(
2015
), pp.
160
178
.10.1016/j.ymssp.2014.12.018
40.
Al-Dahidi
,
S.
,
Di Maio
,
F.
,
Baraldi
,
P.
,
Zio
,
E.
, and
Seraoui
,
R.
,
2018
, “
A Framework for Reconciliating Data Clusters From a Fleet of Nuclear Power Plants Turbines for Fault Diagnosis
,”
Appl. Soft Comput.
,
69
(
2018
), pp.
213
231
.10.1016/j.asoc.2018.04.044
41.
Wang
,
Z.
,
Zhao
,
N.
,
Wang
,
W.
,
Tang
,
R.
, and
Li
,
S.
,
2015
, “
A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine
,”
Math. Probl. Eng.
, Vol. 2015, Article ID 240267.10.1155/2015/240267
42.
Hora Fontes
,
C.
, and
Pereira
,
O.
,
2016
, “
Pattern Recognition in Multivariate Timeseries—A Case Study Applied to Fault Detection in a Gas Turbine
,”
Eng. Appl. Artif. Intell.
,
49
(
2016
), pp.
10
18
.10.1016/j.engappai.2015.11.005
43.
Hora Fontes
,
C.
, and
Budman
,
H.
,
2017
, “
A Hybrid Clustering Approach for Multivariate Time Series—A Case Study Applied to Failure Analysis in a Gas Turbine
,”
ISA Trans.
,
71
(
2017
), pp.
513
529
.10.1016/j.isatra.2017.09.004
44.
Bhargava
,
R. K.
,
2017
,
Technical Dictionary on the Gas Turbine Technology
,
Innovative Turbomachinery Technologies Corp
,
Katy, TX
.
45.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
Development of a One-Dimensional Modular Dynamic Model for the Simulation of Surge in Compression Systems
,”
ASME J. Turbomach.
,
129
(
3
), pp.
437
447
.10.1115/1.2447757
46.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2009
, “
Analysis of Biogas Compression System Dynamics
,”
Appl. Energy
,
86
(
11
), pp.
2466
2475
.10.1016/j.apenergy.2009.03.008
47.
Pezzini
,
P.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2013
, “
Avoiding Compressor Surge During Emergency Shut-Down Hybrid Turbine Systems
,”
ASME
Paper No. GT2013-94810.10.1115/GT2013-94810
48.
Kurz
,
R.
,
Garceau
,
S.
,
Ji
,
M.
, and
Brun
,
K.
,
2019
, “
Compressor Speed Decay During Emergency Shutdowns
,”
ASME
Paper No. GT2019-90020.10.1115/GT2019-90020
49.
von Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Stat. Comput.
,
17
(
4
), pp.
395
416
.10.1007/s11222-007-9033-z
50.
Gu
,
Q.
,
Zhu
,
L.
, and
Cai
,
Z.
,
2009
, “
Evaluation Measures of the Classification Performance of Imbalanced Data Sets
,” ISICA, Springer-Verlag Berlin Heidelberg, Z. Cai, Z. Li, Z. Kang, and Y. Liu, eds., Vol. 51, pp.
461
471
.10.1007/978-3-642-04962-0_53
You do not currently have access to this content.