Abstract

During the ignition of a swirled single-injector combustor, two phases have been identified experimentally. In the first, the flame penetrates the injection unit, while in the second, the flame lifts off after a substantial delay before stabilizing at a distance from the injector. This transient phenomenon is investigated using Large Eddy Simulations based on an Euler–Lagrange description of the liquid spray, an energy deposition model to mimic ignition, and the thickened flame combustion model. It is shown that the initial penetration of the flame in the injector unit is linked with the positive pressure excursion induced by the rapid volumetric expansion of burnt gases. This sudden expansion is itself due to the fast increase in heat release rate that occurs during the initiation of the process. The corresponding positive and negative pressure disturbances induce a rapid reduction of the mass flow rate through the injector, followed by an acceleration of the flow and a return to the nominal value. It is also shown that the flame root disappears after another delay, which results in the flame edge lifting and stabilization at a distance from the injector exhaust corresponding to steady operation of the device. The relatively long delay time before this liftoff takes place is found to correspond to the residence time of the cooled burnt gases in the vicinity of the chamber walls, which are ultimately entrained by the internal recirculation zone and quench the lower flame foot.

References

References
1.
Schulz
,
O.
, and
Noiray
,
N.
,
2018
, “
Autoignition Flame Dynamics in Sequential Combustors
,”
Combust. Flame
,
192
, pp.
86
100
.10.1016/j.combustflame.2018.01.046
2.
Ebi
,
D.
,
Doll
,
U.
,
Schulz
,
O.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2019
, “
Ignition of a Sequential Combustor: Evidence of Flame Propagation in the Autoignitable Mixture
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5013
5020
.10.1016/j.proci.2018.06.068
3.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
4.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
5.
Ballal
,
D. R.
, and
Lefebvre
,
A. H.
,
1975
, “
The Influence of Flow Parameters on Minimum Ignition Energy and Quenching Distance
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1473
1481
.10.1016/S0082-0784(75)80405-X
6.
Ahmed
,
S. F.
,
Balachandran
,
R.
,
Marchione
,
T.
, and
Mastorakos
,
E.
,
2007
, “
Spark Ignition of Turbulent Nonpremixed Bluff-Body Flames
,”
Combust. Flame
,
151
(
1–2
), pp.
366
385
.10.1016/j.combustflame.2007.06.012
7.
Esclapez
,
L.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2015
, “
Ignition Probability of a Partially Premixed Burner Using Les
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3133
3141
.10.1016/j.proci.2014.07.040
8.
Cordier
,
M.
,
Vandel
,
A.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A. M.
,
2013
, “
Laser-Induced Spark Ignition of Premixed Confined Swirled Flames
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
379
407
.10.1080/00102202.2012.725791
9.
Sitte
,
M. P.
,
Bach
,
E.
,
Kariuki
,
J.
,
Bauer
,
H. J.
, and
Mastorakos
,
E.
,
2016
, “
Simulations and Experiments on the Ignition Probability in Turbulent Premixed Bluff-Body Flames
,”
Combust. Theory Modell.
,
20
(
3
), pp.
548
565
.10.1080/13647830.2016.1155756
10.
Neophytou
,
A.
,
Mastorakos
,
E.
, and
Cant
,
R. S.
,
2012
, “
The Internal Structure of Igniting Turbulent Sprays as Revealed by Complex Chemistry DNS
,”
Combust. Flame
,
159
(
2
), pp.
641
664
.10.1016/j.combustflame.2011.08.024
11.
Ballal
,
D.
, and
Lefebvre
,
A.
,
1981
, “
Flame Propagation in Heterogeneous Mixtures of Fuel Droplets, Fuel Vapor and Air
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
321
328
.10.1016/S0082-0784(81)80037-9
12.
de Oliveira
,
P. M.
, and
Mastorakos
,
E.
,
2019
, “
Mechanisms of Flame Propagation in Jet Fuel Sprays as Revealed by OH/Fuel Planar Laser-Induced Fluorescence and OH* Chemiluminescence
,”
Combust. Flame
,
206
, pp.
308
321
.10.1016/j.combustflame.2019.05.005
13.
Neophytou
,
A.
,
Richardson
,
E. S.
, and
Mastorakos
,
E.
,
2012
, “
Spark Ignition of Turbulent Recirculating Non-Premixed Gas and Spray Flames: A Model for Predicting Ignition Probability
,”
Combust. Flame
,
159
(
4
), pp.
1503
1522
.10.1016/j.combustflame.2011.12.015
14.
Bourgouin
,
J. F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
15.
Machover
,
E.
, and
Mastorakos
,
E.
,
2017
, “
Experimental Investigation on Spark Ignition of Annular Premixed Combustors
,”
Combust. Flame
,
178
, pp.
148
157
.10.1016/j.combustflame.2017.01.013
16.
Machover
,
E.
, and
Mastorakos
,
E.
,
2016
, “
Spark Ignition of Annular Non-Premixed Combustors
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
64
70
.10.1016/j.expthermflusci.2015.09.008
17.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Schmitt
,
T.
,
Cuenot
,
B.
,
Durox
,
D.
, and
Candel
,
S.
,
2015
, “
Large Eddy Simulations of the Ignition Sequence of an Annular Multiple-Injector Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3159
3166
.10.1016/j.proci.2014.07.008
18.
Machover
,
E.
, and
Mastorakos
,
E.
,
2017
, “
Numerical Investigation of the Stochastic Behavior of Light-Round in Annular Non-Premixed Combustors
,”
Combust. Sci. Technol.
,
189
(
9
), pp.
1467
1485
.10.1080/00102202.2017.1305366
19.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
20.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2018
, “
Large Eddy Simulation of Light-Round in an Annular Combustor With Liquid Spray Injection and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p. 021504.10.1115/1.4037827
21.
Collin-Bastiani
,
F.
,
2019
, “
Modeling and Large Eddy Simulation of Two-Phase Ignition in Gas Turbines
,” Ph.D. thesis,
Institut National Polytechnique de Toulouse
,
Toulouse, France
.
22.
Prieur
,
K.
,
Vignat
,
G.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Flame and Spray Dynamics During the Light-Round Process in an Annular System Equipped With Multiple Swirl Spray Injectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061007
.10.1115/1.4042024
23.
Keller
,
J. O.
,
Vaneveld
,
L.
,
Ghoniem
,
A. F.
,
Daily
,
J. W.
,
Oppenheim
,
A. K.
,
Korschelt
,
D.
, and
Hubbard
,
G. L.
,
1982
, “
Mechanism of Instabilities in Turbulent Combustion Leading to Flashback
,”
AIAA
,
20
(
2
), pp.
254
262
.https://ui.adsabs.harvard.edu/abs/1981aiaa.meetT....K/abstract
24.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2006
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition and Instability
,”
ASME Paper No. GT2006-90770
.10.1115/GT2006-90770
25.
Schulz
,
O.
,
Doll
,
U.
,
Ebi
,
D.
,
Droujko
,
J.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Thermoacoustic Instability in a Sequential Combustor: Large Eddy Simulation and Experiments
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5325
5332
.10.1016/j.proci.2018.07.089
26.
Sommerer
,
Y.
,
Galley
,
D.
,
Poinsot
,
T.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2004
, “
Large Eddy Simulation and Experimental Study of Flashback and Blow-Off in a Lean Partially Premixed Swirled Burner
,”
J. Turbul.
,
5
, pp.
1
21
.https://www.tandfonline.com/doi/abs/10.1088/1468-5248/5/1/037
27.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
28.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
29.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Ver. Dtsch. Ing.
,
77
, pp.
318
320
.
30.
Spalding
,
D. B.
,
1953
, “
The Combustion of Liquid Fuels
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
847
864
.10.1016/S0082-0784(53)80110-4
31.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporisation Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
32.
Frössling
,
N.
,
1938
, “
Über Die Verdunstung Fallender Tropfen (on the Evaporation of Falling Drops)
,”
Gerlands Beiträge Geophys.
,
52
, pp.
170
216
.
33.
Hubbard
,
G. L.
,
Denny
,
V. E.
, and
Mills
,
A. F.
,
1975
, “
Droplet Evaporation: Effects of Transients and Variable Properties
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1003
1008
.10.1016/0017-9310(75)90217-3
34.
Sacomano Filho
,
F. L.
,
Krieger Filho
,
G. C.
,
van Oijen
,
J. A.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2019
, “
A Novel Strategy to Accurately Represent the Carrier Gas Properties of Droplets Evaporating in a Combustion Environment
,”
Int. J. Heat Mass Transfer
,
137
, pp.
1141
1153
.10.1016/j.ijheatmasstransfer.2019.03.164
35.
Hannebique
,
G.
,
Sierra
,
P.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2013
, “
Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner
,”
Flow Turbul. Combust.
,
90
(
2
), pp.
449
469
.10.1007/s10494-012-9416-x
36.
Horner
,
W. G.
,
1819
, “
A New Method of Solving Numerical Equations of All Orders by Continuous Approximation
,”
Philos. Trans. R. Soc. London
,
109
, pp.
308
335
.https://www.jstor.org/stable/107508
37.
Sanjosé
,
M.
,
Senoner
,
J. M.
,
Jaegle
,
F.
,
Cuenot
,
B.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2011
, “
Fuel Injection Model for Euler-Euler and Euler-Lagrange Large-Eddy Simulations of an Evaporating Spray Inside an Aeronautical Combustor
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
514
529
.10.1016/j.ijmultiphaseflow.2011.01.008
38.
Prieur
,
K.
,
2017
, “
Combustion Dynamics of an Annular Combustor With Multiple Spray Injectors
,” Ph.D. thesis,
Université Paris Saclay
,
Saint-Aubin, France
.
39.
Paulhiac
,
D.
,
Cuenot
,
B.
,
Riber
,
E.
,
Esclapez
,
L.
, and
Richard
,
S.
,
2020
, “
Analysis of the Spray Flame Structure in a Lab-Scale Burner Using Large Eddy Simulation and Discrete Particle Simulation
,”
Combust. Flame
,
212
, pp.
25
38
.10.1016/j.combustflame.2019.10.013
40.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene-Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
41.
Smallbone
,
A. J.
,
Liu
,
W.
,
Law
,
C. K.
,
You
,
X. Q.
, and
Wang
,
H.
,
2009
, “
Experimental and Modeling Study of Laminar Flame Speed and Non-Premixed Counterflow Ignition of n-Heptane
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1245
1252
.10.1016/j.proci.2008.06.213
42.
Légier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program, Centre for Turbulence Research
,
NASA Ames/Stanford University
,
Moffett Field, CA
, pp.
157
168
. https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
43.
Charlette
,
F.
,
Veynante
,
D.
, and
Meneveau
,
C.
,
2002
, “
A Power-Law Wrinkling Model for LES of Premixed Turbulent Combustion: Part I—Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
44.
Rochette
,
B.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Vermorel
,
O.
,
2020
, “
A Generic and Self-Adapting Method for Flame Detection and Thickening in the Thickened Flame Model
,”
Combust. Flame
,
212
, pp.
448
458
.10.1016/j.combustflame.2019.11.015
45.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
46.
Lancien
,
T.
,
2018
, “
Etude Numérique de L'allumage Diphasique de Foyers Annulaires Multi-Brûleurs
,” Ph.D. thesis,
Université Paris Saclay, Saint-Aubin
,
France
.
47.
Lacaze
,
G.
,
Richardson
,
E.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Spark Ignition in a Turbulent Methane Jet
,”
Combust. Flame
,
156
(
10
), pp.
1993
2009
.10.1016/j.combustflame.2009.05.006
You do not currently have access to this content.