Abstract

Exceptional points can be found for specific sets of parameters in thermoacoustic systems. At an exceptional point, two eigenvalues and their corresponding eigenfunctions coalesce. Given that the sensitivity of these eigenvalues to parameter changes becomes infinite at the exceptional point, their occurrence may greatly affect the outcome and reliability of numerical stability analysis. We propose a new method to identify exceptional points in thermoacoustic systems. By iteratively updating the system parameters, two initially selected eigenvalues are shifted toward each other, ultimately colliding and generating the exceptional point. Using this algorithm, we were able to identify for the first time a physically meaningful exceptional point with positive growth rate in a thermoacoustic model. Furthermore, our analysis goes beyond previous studies inasmuch as we employ a more realistic flame transfer function to model flame dynamics. Building on these results, we analyze the effect of exceptional points on the reliability of thermoacoustic stability analysis. In the context of uncertainty quantification, we show that surrogate modeling is not reliable in the vicinity of an exceptional point, even when large sets of training samples are provided. The impact of exceptional points on the propagation of input uncertainties is demonstrated via Monte Carlo computations. The increased sensitivity associated with the exceptional point results in large variances for eigenvalue predictions, which needs to be taken into account for reliable stability analysis.

References

1.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
2.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
3.
Cartarius
,
H.
,
Main
,
J.
, and
Wunner
,
G.
,
2009
, “
Exceptional Points in the Spectra of Atoms in External Fields
,”
Phys. Rev. A
,
79
(
5
), p.
053408
.10.1103/PhysRevA.79.053408
4.
Abdrabou
,
A.
, and
Lu
,
Y. Y.
,
2018
, “
Exceptional Points of Resonant States on a Periodic Slab
,”
Phys. Rev. A
,
97
(
6
), p.
063822
.10.1103/PhysRevA.97.063822
5.
Heiss
,
W. D.
,
2012
, “
The Physics of Exceptional Points
,”
J. Phys. A: Math. Theor.
,
45
(
44
), p.
444016
.10.1088/1751-8113/45/44/444016
6.
Mensah
,
G. A.
,
Magri
,
L.
,
Silva
,
C. F.
,
Buschmann
,
P. E.
, and
Moeck
,
J. P.
,
2018
, “
Exceptional Points in the Thermoacoustic Spectrum
,”
J. Sound Vib.
,
433
, pp.
124
128
.10.1016/j.jsv.2018.06.069
7.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Combust. Flame
,
211
, pp.
83
95
.10.1016/j.combustflame.2019.09.018
8.
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Stabilization of Acoustic Modes Using Helmholtz and Quarter-Wave Resonators Tuned at Exceptional Points
,”
J. Sound Vib.
,
445
, pp.
288
307
.10.1016/j.jsv.2018.12.011
9.
Guo
,
S.
,
Silva
,
C. F.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021032
.10.1115/1.4041652
10.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors: Part II—Uncertainty Quantification
,”
Comput. Phys.
,
325
, pp.
411
421
.10.1016/j.jcp.2016.08.043
11.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2018
, “
Methods for the Calculation of Thermoacoustic Stability Boundaries and Monte Carlo-Free Uncertainty Quantification
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
61501
.10.1115/1.4038156
12.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.10.1115/1.4034203
13.
Ndiaye
,
A.
,
2017
, “
Quantification Des Incertitudes Pour la Prédiction Des Instabilités Thermo-Acoustiques Dans Les Chambres de Combustion
,”
Ph.D. thesis
,
Universite de Montpellier
,
Montpellier, France
.https://imag.umontpellier.fr/~nicoud/Theses/Ndiaye/these_ndiaye.pdf
14.
Avdonin
,
A.
,
Jaensch
,
S.
,
Silva
,
C. F.
,
Češnovar
,
M.
, and
Polifke
,
W.
,
2018
, “
Uncertainty Quantification and Sensitivity Analysis of Thermoacoustic Stability With Non-Intrusive Polynomial Chaos Expansion
,”
Combust. Flame
,
189
, pp.
300
310
.10.1016/j.combustflame.2017.11.001
15.
Avdonin
,
A.
, and
Polifke
,
W.
,
2019
, “
Quantification of the Impact of Uncertainties in Operating Conditions on the Flame Transfer Function With Non-Intrusive Polynomial Chaos Expansion
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011020
.10.1115/1.4040745
16.
Guo
,
S.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2019
, “
Efficient Robust Design for Thermoacoustic Instability Analysis: A Gaussian Process Approach
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031026
.10.1115/1.4044197
17.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
61503
.10.1115/1.4000127
18.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
19.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.10.1016/j.combustflame.2017.04.015
20.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.10.1016/j.anucene.2013.10.037
21.
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Modeling Flame Describing Functions Based on Hydrodynamic Linear Stability Analysis
,”
ASME
Paper No. GT2016-57316.10.1115/GT2016-57316
22.
Albayrak
,
A.
, and
Polifke
,
W.
,
2016
, “
Propagation Velocity of Inertial Waves in Cylindrical Swirling Flow
,”
23rd International Congress on Sound and Vibration
(
ICSV23
), IIAV, Athens, Greece, July 10–14. https://www.semanticscholar.org/paper/Propagation-Velocity-of-Inertial-Waves-in-Swirling-Albayrak-Polifke/d4c66655a7497e944d3d1bafd9cbd7b857e2bb18
23.
Juniper
,
M. P.
,
2018
, “
Sensitivity Analysis of Thermoacoustic Instability With Adjoint Helmholtz Solvers
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110509
.10.1103/PhysRevFluids.3.110509
24.
Güttel
,
S.
, and
Tisseur
,
F.
,
2017
, “
The Nonlinear Eigenvalue Problem
,”
Acta Numer.
,
26
, pp.
1
94
.10.1017/S0962492917000034
25.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.10.1146/annurev-fluid-010313-141253
26.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
)May, pp.
620
630
.10.1103/PhysRev.106.620
27.
Chattopadhyay
,
P.
,
Mondal
,
S.
,
Bhattacharya
,
C.
,
Mukhopadhyay
,
A.
, and
Ray
,
A.
,
2017
, “
Dynamic Data-Driven Design of Lean Premixed Combustors for Thermoacoustically Stable Operations
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111419
.10.1115/1.4037307
28.
Swiler
,
L.
,
Slepoy
,
R.
, and
Giunta
,
A.
,
2006
, “
Evaluation of Sampling Methods in Constructing Response Surface Approximations
,”
AIAA Paper No. 2006-1827.
29.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
ASCE, Liverpool
, UK, pp.
2554
2563
.10.1061/9780784413609.257
You do not currently have access to this content.