Abstract

Owing to the high energy density of hydrocarbon fuels, ultramicrogas turbines (UMGT) with power outputs below 1 kW have clear potential as battery replacement in drones. However, previous works on gas turbines of this scale revealed severe challenges due to air bearing failures, heat transfer from turbine to compressor, rotordynamic instability, and manufacturing limitations. To overcome these obstacles, a novel gas turbine architecture is proposed based on conventional roller bearing technology that operates at up to 500,000 RPM and an additively manufactured monolithic rotor in cantilevered configuration, equipped with internal cooling blades. The optimum turbomachinery design is elaborated using diabatic cycle calculation, coupled with turbomachinery meanline design code. This approach provides new insights on the interdependencies of heat transfer, component efficiency, and system electric efficiency. Thereby, a reduced design pressure ratio of 2.5 with 1200 K turbine inlet temperature (TIT) is identified as most suitable for 300 W electric power output. In following, a review of available additive manufacturing technologies yields material properties, surface roughness, and design constraints for the monolithic rotor. Rotordynamic simulations are then conducted for four available materials using a simplified rotor model to identify valid permanent magnet dimensions that would avoid operation close to bending modes. To complete the baseline engine architecture, a novel radial inflow combustor concept is proposed based on porous inert media combustion. computational fluid dynamics (CFD) simulations are conducted to quantify compressor efficiency and conjugate heat transfer (CHT) analysis of the monolithic rotor is performed to assess the benefit of the internal cooling cavity and vanes for different rotor materials. It is demonstrated that the cavity flow absorbs large amount of heat flux from turbine to compressor, thus cooling the rotor structure and improving the diabatic cycle efficiency. Finally, the results of this conceptual study show that ultramicrogas turbine with electric efficiency of up to 5% is feasible, while energy density is increased by factor of 3.6, compared to lithium-ion batteries.

References

1.
BCC Research
,
2018
, “
Drone Technology and Global Markets: Market Report Oct 2018
,” BCC Research, Wellesley, MA, Report No.
IAS104B
.https://www.bccresearch.com/report/download/report/IAS104B
2.
Teal Group
,
2020
, “
World Military Unmanned Aerial Systems: Market Profile & Forecast
,” Military UAV Market To Top $83B, Fairfax, VA, accessed Oct. 16, 2020, https://insideunmannedsystems.com/military-uav-market-to-top-83b/
3.
CompTIA,
2018
, “
The Drone Market: Insights from Customers and Providers
,” Research Report, The Drone Market: Insights from Customers and Providers, Downers Grove, IL, accessed Oct. 16, 2020, https://www.comptia.org/content/research/the-drone-market-insights-from-customers-and-providers
4.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.10.1115/1.1739245
5.
Epstein
,
A. H.
,
Jacobson
,
S. A.
,
Protz
,
J. M.
, and
Frechette
,
L. G.
,
2000
, “
Shirtbutton-Sized Gas Turbines: The Engineering Challenges of Micro High Speed Rotating Machinery
,”
Proceedings of the Eighth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,
Honolulu, Hawai, Mar. 26–30, pp.
26
30
.https://www.semanticscholar.org/paper/SHIRTBUTTON-SIZED-GAS-TURBINES%3A-THE-ENGINEERING-OF-Epstein-Jacobson/a2410dc11d4d87e54a910109747eb986c216f3b8
6.
Fréchette
,
L. G.
,
Jacobson
,
S. A.
,
Breuer
,
K. S.
,
Ehrich
,
F. F.
,
Ghodssi
,
R.
,
Khanna
,
R.
,
Wong
,
C. W.
,
Zhang
,
X.
,
Schmidt
,
M. A.
, and
Epstein
,
A. H.
,
2000
,
Demonstration of a Microfabricated High-Speed Turbine Supported on Gas Bearings
,
Gas Turbine Laboratory and Microsystems Technology Laboratories Massachusetts Institute of Technology
,
Cambridge, UK
.
7.
Orr
,
D. J.
, “
Macro-Scale Investigation of High Speed Gas Bearings for MEMS Devices
,”
Ph.D thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.https://dspace.mit.edu/handle/1721.1/9268
8.
Mehra
,
A.
, “
Computational Investigation and Design of Low Reynolds Number Micro-Turbomachinery
,”
Master thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.https://dspace.mit.edu/handle/1721.1/10516
9.
Isomura
,
K.
,
Murayama
,
M.
, and
Kawakubo
,
T.
,
2001
, “
Feasibility Study of a Gas Turbine at Micro Scale
,”
ASME
Paper No. 2001-GT-0101.10.1115/2001-GT-0101
10.
Tanaka
,
S.
,
Hikichi
,
K.
,
Togo
,
S.
,
Murayama
,
M.
,
Hirose
,
Y.
,
Sakurai
,
T.
, and
Esashi
,
M.
,
2007
, “
World's Smallest Gas Turbine Establishing Brayton Cycle
,” Seventh International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (
PowerMEMS 2007
), Freiburg, Germany, Nov. 27–29, pp.
359
362
.https://www.researchgate.net/publication/268009836_World's_smallest_gas_turbine_establishing_brayton_cycle
11.
Tanaka
,
S.
,
Isomura
,
K.
,
Togo
,
S. I.
, and
Esashi
,
M.
,
2004
, “
Turbo Test Rig With Hydroinertia Air Bearings for a Palmtop Gas Turbine
,”
J. Micromech. Microeng.
,
14
(
11
), pp.
1449
1454
.10.1088/0960-1317/14/11/003
12.
Park
,
C. H.
,
Choi
,
S. K.
, and
Ham
,
S. Y.
,
2011
, “Design and Experiment of 400,000 rpm High Speed Rotor and Bearings for 500W Class Micro Gas Turbine Generator,” 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (
PowerMEMS 2011
), Seoul, Korea, Nov.
15
18
.https://pdfs.semanticscholar.org/2920/050492ef44a9cb84e913c845f04d5dd3b40c.pdf
13.
Park
,
J. S.
,
Park
,
S.
,
Kim
,
K. M.
,
Choi
,
B. S.
, and
Cho
,
H. H.
,
2013
, “
Effect of the Thermal Insulation on Generator and Micro Gas Turbine System
,”
Energy
,
59
, pp.
581
589
.10.1016/j.energy.2013.07.019
14.
Seo
,
J.
,
Lim
,
H. S.
,
Park
,
J.
,
Park
,
M. R.
, and
Choi
,
B. S.
,
2017
, “
Development and Experimental Investigation of a 500-W Class Ultra-Micro Gas Turbine Power Generator
,”
Energy
,
124
, pp.
9
18
.10.1016/j.energy.2017.02.012
15.
Seo
,
J. M.
,
Park
,
J. Y.
, and
Choi
,
B. S.
,
2013
, “
Start-Up and Self-Sustain Test of 500 W Ultra-Micro Gas Turbine Generator
,”
J. Phys. Conf. Ser.
,
476
, p.
012060
.10.1088/1742-6596/476/1/012060
16.
Peirs
,
J.
,
Waumans
,
T.
,
Vleugels
,
P.
,
Al-Bender
,
F.
,
Stevens
,
T.
,
Verstraete
,
T.
,
Stevens
,
S.
,
D'hulst
,
R.
,
Verstraete
,
D.
,
Fiorini
,
P.
,
Van den Braembussche
,
R.
,
Driesen
,
J.
,
Puers
,
R.
,
Hendrick
,
P.
,
Baelmans
,
M.
, and
Reynaerts
,
D.
,
2007
, “
Van Den Braembussche, R. “Micropower Generation With Microgasturbines: A Challenge
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
4
), pp.
489
500
.10.1243/0954406JMES472
17.
Verstraete
,
D.
, and
Bowkett
,
C.
,
2015
, “
Impact of Heat Transfer on the Performance of Micro Gas Turbines
,”
Appl. Energy
,
138
, pp.
445
449
.10.1016/j.apenergy.2014.10.075
18.
Peirs
,
J.
,
Waumans
,
T.
,
Al-Bender
,
F.
, and
Reynaerts
,
D.
,
2010
, “
Experimental Verification of Compressor Performance for an Ultra-Microgasturbine
,” 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (
PowerMEMS 2010
), Leuven, Belgium, Nov. 30–Dec. 3, pp.
99
102
.https://lirias.kuleuven.be/retrieve/137586
19.
Liu
,
H. C.
,
Kang
,
S.
,
Prinz
,
F. B.
, and
Stampfl
,
J.
,
2002
, “
Fabrication of Ceramic Components for Micro Gas Turbine Engines
,”
26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B, The American Ceramic Society
, Cocoa Beach, FL, Jan. 13–18, pp.
43
50
.http://info.tuwien.ac.at/stampfl/publikationen/cocoa_2002.pdf
20.
Johnston
,
J. P.
,
Kang
,
S.
,
Arima
,
T.
,
Matsunaga
,
M.
,
Tsuru
,
H.
, and
Prinz
,
F. B.
,
2003
, “
Performance of a Micro-Scale Radial-Flow Compressor Impeller Made of Silicon Nitride
,” IGTC Tokyo, Tokyo, Japan, Nov. 2–7, Paper No.
IGTC2003Tokyo OS-110
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.5106&rep=rep1&type=pdf
21.
Kang
,
S.
,
Johnston
,
J. P.
,
Arima
,
T.
,
Matsunaga
,
M.
,
Tsuru
,
H.
, and
Printz
,
F. B.
,
2004
, “
Microscale Radial-Flow Compressor Impeller Made of Silicon Nitride: Manufacturing and Performance
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
358
365
.10.1115/1.1739246
22.
Kang
,
S.
, “
Fabrication of Functional Mesoscopic Ceramic Parts for Micro Gas Turbine Engines
,”
Ph.D thesis
,
Stanford University
,
Stanford, CA
.https://www.researchgate.net/publication/252914892_Fabrication_of_functional_mesoscopic_ceramic_parts_for_micro_gas_turbine_engines
23.
Dessornes
,
O.
, and
Zwyssig
,
C.
,
2010
, “
Micro-Generator for Ultra Micro Gas Turbine
,” Power MEMS, Leuven, Belgium, Nov. 30–Dec. 3, pp.
195
198
.
24.
Dessornes
,
O.
,
Landais
,
S.
,
Valle
,
R.
,
Fourmaux
,
A.
,
Burguburu
,
S.
,
Zwyssig
,
C.
, and
Kozanecki
,
Z.
,
2014
, “
Advances in the Development of a Microturbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
71201
.10.1115/1.4026541
25.
Whittfield
,
A.
,
1990
, “
The Preliminary Design of Radial Inflow Turbines
,”
ASME J. Turbomach.
,
112
, pp.
50
–5
7
.10.1115/1.2927420
26.
Rodgers
,
C.
, and
Geiser
,
R.
,
1987
, “
Performance of a High-Efficiency Radial/Axial Turbine
,”
ASME J. Turbomach.
,
109
(
2
), pp.
151
154
.10.1115/1.3262077
27.
Kyocera Corporation, 2019,
Material Properties of Ceramics
,” Kyocera Corporation, Kyoto, Japan, accessed Oct. 16, 2020, https://global.kyocera.com/prdct/fc/list/material/
28.
Special Metals Corporation,
2019
, “
Inconel Alloy 718
,” Special Metals Corporation, New Hartford, NY, accessed Oct. 16, 2020, www.specialmetals.com
29.
Special Metals Corporation,
2019
, “
Nimonic 115
,” Special Metals Corporation, New Hartford, NY, accessed Oct. 16, 2020, www.specialmetals.com
30.
High Temp Metals,
2015
, “
Rene 41 Technical Data
,” High Temp Metals, Sylmar, CA, accessed Oct. 16, 2020, https://www.hightempmetals.com/techdata/hitempRene41data.php
31.
Lithoz GmbH, 2019,
LCM—Technology
,” Lithoz GmbH, Vienna, Austria, accessed Oct. 2020, http://www.lithoz.com/en/additive-manufacturing/lcm-technology
32.
International Syalons, 2019,
3D-Printed Silicon Nitride
,” International Syalons, Wallsend, UK, accessed Oct. 16, 2020, https://www.syalons.com/2016/09/26/3d-printed-silicon-nitride/
33.
McLEAN
,
A. F.
,
1970
, “
The Application of Ceramics to the Small Gas Turbine
,”
ASME
Paper No. 70-GT-105. 10.1115/70-GT-105
34.
Kunz
,
W.
,
Abel
,
J.
,
Moritz
,
T.
, and
Stockmann
,
J.
,
2016
, “
High-Performance Ceramics for Gas Turbines—From Materials to Components
,” Fraunhofer IKTS, Hermsdorf, Germany, Reprot No. IKTS Annual Report 2015/2016, pp.
26
27
.https://www.ikts.fraunhofer.de/content/dam/ikts/downloads/annual_reports/jb2015/12_High-performance_ceramics_for_gas_turbines_-_From_materials_to_components.pdf
35.
Chevalier
,
J.
,
Gremillard
,
L.
, and
Deville
,
S.
,
2007
, “
Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants
,”
Annu. Rev. Mater. Res.
,
37
(
1
), pp.
1
32
.10.1146/annurev.matsci.37.052506.084250
36.
Panda
,
P. K.
,
Kannan
,
T. S.
,
Dubois
,
J.
,
Olagnon
,
C.
, and
Fantozzi
,
G.
,
2002
, “
Thermal Shock and Thermal Fatigue Study of Alumina
,”
J. Eur. Ceram. Soc.
,
22
(
13
), pp.
2187
2196
.10.1016/S0955-2219(02)00022-5
37.
Wang
,
X.
,
Gong
,
X.
, and
Chou
,
K.
,
2017
, “
Review on Powder-Bed Laser Additive Manufacturing of Inconel 718 Parts
,”
Proc. Inst. Mech. Eng., Part B
,
231
(
11
), pp.
1890
1903
.10.1177/0954405415619883
38.
EOS GmbH—Electro Optical Systems, 2014,
EOS NickelAlloy IN718 Material Data Sheet
,” EOS GmbH—Electro Optical Systems, Krailling, Germany, accessed Oct. 16, 2020, https://www.rapidmade.com/inconel-718-nickel-alloy-direct-metal-laser-sintering-dmls-slm-3d-printing-data-sheet
39.
3D Micromac AG,
2019
, “
3D-Printing Using Micro Laser Sintering
,” 3D-Printing Using Micro Laser Sintering, Chemnitz, Germany, accessed Oct. 16, 2020, https://3d-micromac.com/laser-micromachining/applications/3d-printing/
40.
Steinbach
,
A. G.
,
2020
, “
Design Guide
,” Design Guide, Steinbach AG, Detmold, Germany, accessed Oct. 16, 2020, https://www.steinbach-ag.de/en/technical-ceramics/know-how/design-guide.html
41.
Diegel
,
O.
,
Nordin
,
A.
, and
Motte
,
D.
,
2019
,
A Practical Guide to Design for Additive Manufacturing
,
Springer
,
Singapore
.
42.
Markovic
,
M.
, and
Perriard
,
Y.
,
2006
, “
Simplified Design Methodology for a Slotless Brushless DC Motor
,”
IEEE Trans. Magn.
,
42
(
12
), pp.
3842
3846
.10.1109/TMAG.2006.884108
43.
Arroyo
,
A.
,
McLorn
,
M.
,
Fabian
,
M.
,
White
,
M.
, and
Sayma
,
A. I.
,
2016
, “
Rotor-Dynamics of Different Shaft Configurations for a 6 kW Micro Gas Turbine for Concentrated Solar Power
,”
ASME
Paper No. GT2016-56479.10.1115/GT2016-56479
44.
Marin
,
M. A.
,
2012
, “
Rotor Dynamics of Overhung Rotors: Hysteretic Dynamic Behavior
,”
ASME
Paper No. GT2012-68285.10.1115/GT2012-68285
45.
Hearn
,
E. J.
,
1997
,
Mechanics of Materials 2: The Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
46.
Zwyssig
,
J.
, and
Kolar
,
J. W.
,
2005
, “
Design of a 100 W, 500000 Rpm Permanent-Magnet Generator for Mesoscale Gas Turbines
,”
40th IAS Annual Meeting, Conference Record of the 2005 Industry Applications Conference
, Kowloon, Hong Kong, Oct. 2–6, pp.
253
260
.10.1109/IAS.2005.1518318
47.
Mohamad
,
A. A.
,
2005
, “
Combustion in Porous Media: Fundamentals and Applications
,”
Transport Phenomena in Porous Media III
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
287
304
.10.1016/B978-008044490-1/50015-6
48.
Guidez
,
J.
,
Roux
,
P.
,
Poirson
,
N.
,
Jourdanneau
,
E.
,
Orain
,
M.
, and
Grisch
,
F.
,
2009
, “
Investigation of Combustion in Miniaturised Combustor for Application to Micro Gas Turbines
,”
Prog. Propul. Phys.
,
1
, pp.
469
480
10.1051/eucass/200901469
49.
Sadasivuni
,
V.
, and
Agrawal
,
A. K.
,
2009
, “
A Novel Meso-Scale Combustion System for Operation With Liquid Fuels
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3155
3162
.10.1016/j.proci.2008.06.039
50.
Turkeli-Ramadan
,
Z.
,
Sharma
,
R. N.
, and
Raine
,
R. R.
,
2014
, “
Clean Flat Flame Combustor for Ultra Micro Gas Turbine
,”
Proceedings of 19th Australasian Fluid Mechanics Conference
, Melbourne, Australia, Dec. 8–11, Paper No. 193.https://people.eng.unimelb.edu.au/imarusic/proceedings/19/193.pdf
51.
Tseng
,
C.
, and
Howell
,
J. R.
,
1996
, “
Combustion of Liquid Fuels in a Porous Radiant Burner
,”
Combust. Sci. Technol.
,
112
(
1
), pp.
141
161
.10.1080/00102209608951953
52.
Kaplan
,
M.
, and
Hall
,
M. J.
,
1995
, “
The Combustion of Liquid Fuels Within a Porous Media Radiant Burner
,”
Exp. Therm. Fluid Sci.
,
11
(
1
), pp.
13
20
.10.1016/0894-1777(94)00106-I
53.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p. 031035.10.1115/1.4007548
54.
Casey
,
M. V.
,
2014
, “
Centrifugal Compressor Design
,”
Israeli Symposium on Turbomachinery and Jet Engines and Gas Turbines,
Haifa, Israel, Nov. 2, Paper No. A4.
55.
Chinnaswamy
,
S.
,
2015
, “The Impact of Surface Roughness on Transonic Compressor Performance,”
Master's thesis
, Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden, pp.
1652
8557
.http://publications.lib.chalmers.se/records/fulltext/224321/224321.pdf
56.
Adams
,
T.
,
Grant
,
C.
, and
Watson
,
H.
,
2012
, “
A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness
,”
Int. J. Mech. Eng. Mechatronics
,
1
(
2
), pp.
66
71
. 10.11159/ijmem.2012.008
57.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
van den Braembussche
,
R. A.
,
2007
, “
Numerical Study of the Heat Transfer in Micro Gas Turbines
,”
ASME J. Turbomach.
,
129
(
4
), pp.
835
841
.10.1115/1.2720874
58.
Munro
,
R.
,
2005
, “
Evaluated Material Properties for a Sintered Alpha-Alumina
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1919
1928
.10.1111/j.1151-2916.1997.tb03074.x
59.
Kondoh
,
J.
,
Shiota
,
H.
,
Kawachi
,
K.
, and
Nakatani
,
T.
,
2004
, “
Yttria Concentration Dependence of Tensile Strength in Yttria-Stabilized Zirconia
,”
J. Alloys Compd.
,
365
(
1–2
), pp.
253
258
.10.1016/S0925-8388(03)00640-6
60.
Evans
,
A. G.
, and
Wiederhorn
,
S. M.
,
1974
, “
Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperatures
,”
J. Mater. Sci.
,
9
(
2
), pp.
270
278
.10.1007/BF00550951
61.
Achtelik
,
M.
,
Doth
,
K.
,
Gurdan
,
D.
, and
Stumpf
,
J.
,
2012
, “
Design of a multi rotor MAV With Regard to Efficiency, Dynamics and Redundancy
,”
AIAA
Paper No. 2012-4779.10.2514/6.2012-4779
62.
Luomi
,
J.
,
Zwyssig
,
C.
,
Looser
,
A.
, and
Kolar
,
J. W.
,
2009
, “
Efficiency Optimization of a 100-W 500 000-r/Min Permanent-Magnet Machine Including Air-Friction Losses
,”
IEEE Trans. Ind. Appl.
,
45
(
4
), pp.
1368
1377
.10.1109/TIA.2009.2023492
63.
Zwyssig
,
2006
, “
Analytical and Experimental Investigation of a Low Torque, Ultra-High Speed Drive System
,”
Conference Record of the IEEE Industry Applications Conference Forty-First IAS Annual Meeting No. 3
, Tampa, FL, Oct. 8–12, pp.
1507
1513
.10.1109/IAS.2006.256729
64.
Zwyssig
,
2006
, “
Power Electronics Interface for a 100 W, 500000 rpm Gas Turbine Portable Power Unit
,”
Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition
, Dallas, TX, Mar. 19–23, pp.
283
289
. https://www.pes-publications.ee.ethz.ch/uploads/tx_ethpublications/zwyssig_APEC06.pdf
65.
McBride
,
B. J.
,
2002
,
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,
National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field
,
Cleveland, OH
.
66.
Visser
,
W. P. J.
,
Shakariyants
,
S. A.
, and
Oostveen
,
M.
,
2011
, “
Development of a 3 kW Microturbine for CHP Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042301
.10.1115/1.4002156
67.
Visser
,
W. P.
, and
Broomhead
,
M. J.
,
2000
, “
GSP, a Generic Object-Oriented Gas Turbine Simulation Environment
,”
ASME
Paper No. 2000-GT-0002.10.1115/2000-GT-0002
68.
Kurzke
,
J.
,
2007
,
GasTurb 11: Design and Off-Design Performance of Gas Turbines
,
GasTurb GmbH
,
Aachen, Germany
.
69.
Casey
,
M. V.
, and
Fesich
,
T. M.
,
2010
, “
The Efficiency of Turbocharger Compressors With Diabatic Flows
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
72302
.10.1115/1.4000300
70.
Nagashima
,
T.
,
Okamoto
,
K.
, and
Ribaud
,
Y.
,
2005
, “
Cycles and Thermal System Integration Issues of Ultra-Micro Gas Turbines, (Lecture Series on Micro Gas Turbines)
,” NATO Research and Technology Organisation, Neuilly-sur-Seine, France, Standard No.
RTO-EN-AVT-131
.https://www.sto.nato.int/publications/STO%20Educational%20Notes/RTO-EN-AVT-131/EN-AVT-131-04.pdf
71.
Shaaban
,
S.
, and
Seume
,
J.
,
2012
, “
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
1.
10.1155/2012/625453
You do not currently have access to this content.