Abstract

Power augmentation devices in wind energy applications have been receiving increasing interest from both the scientific and the industrial community. In particular, Gurney flaps (GFs) showed a great potential thanks to the passive functioning, the simple construction, and the possibility to add them as a retrofit to existing rotors. Within this context, the authors have performed an extended investigation on the lift increase capabilities of GFs for the well-known NACA 0021 airfoil, which has been used in several wind energy applications up to now. This paper shows the results of a combined experimental and numerical analysis considering different geometrical configurations of the flaps under both static and dynamic conditions. Experimental data were first obtained for the AoA range of 180 degrees at a Reynolds number of 180 k to analyze the impact of three different geometrical configurations of the GF on the aerodynamic behavior. The geometrical configurations were defined by varying the length of the flap (1.4% and 2.5% of the chord) and its inclination angle with respect to the blade chord (90 deg and 45 deg). The experimental investigation involved also dynamic sinusoidal pitching movements at multiple reduced frequencies to evaluate the stall hysteresis cycle. An unsteady computational fluid dynamics (CFD) numerical model was calibrated against wind tunnel data and then exploited to extend the investigation to a wider range of Reynolds numbers for dynamic AoA rates of change typical of vertical-axis wind turbines, i.e., characterized by higher reduced frequencies with a nonsinusoidal motion law.

References

1.
Liebeck
,
R. H.
,
1978
, “
Design of Subsonic Airfoils for High Lift
,”
J. Aircr.
,
15
(
9
), pp.
547
561
.10.2514/3.58406
2.
Li
,
Y.
,
Wang
,
J.
, and
Zhang
,
P.
,
2002
, “
Effects of Gurney Flaps on a NACA0012 Airfoil
,”
Flow Turbul. Combust.
,
68
(
1
), pp.
27
39
.10.1023/A:1015679408150
3.
Neuhart
,
D. H. P.
,
1988
, “
A Water Tunnel Study of Gurney Flaps
,” NASA, Washington, DC, Report No.
NASA-TM-4071
.https://ntrs.nasa.gov/citations/19890004024
4.
Myose
,
R.
,
Heron
,
I.
, and
Papadakis
,
M.
,
1996
, “
Effect of Gurney Flaps on a NACA 0011 Airfoil
,”
AIAA
Paper No. 96-0059.10.2514/6.1996-59
5.
Storms
,
B. L.
, and
Jang
,
C. S.
,
1994
, “
Lift Enhancement of an Airfoil Using a Gurney Flap and Vortex Generators
,”
J. Aircr.
,
31
(
3
), pp.
542
547
.10.2514/3.46528
6.
Jang
,
C. S.
,
Ross
,
J. C.
, and
Cummings
,
R. M.
,
1998
, “
Numerical Investigation of an Airfoil With a Gurney Flap
,”
Aircr. Des.
,
1
(
2
), pp.
75
88
.10.1016/S1369-8869(98)00010-X
7.
Giguere
,
P.
,
Dumas
,
G.
, and
Lemay
,
J.
,
2012
, “
Gurney Flap Scaling for Optimum Lift-to-Drag Ratio
,”
AIAA J.
, 35(12), pp.
1888
1890
.10.2514/2.49
8.
Chandrasekhara
,
M.
,
Martin
,
P.
, and
Tung
,
C.
, “
Compressible Dynamic Stall Performance of a Variable Droop Leading Edge Airfoil With a Gurney Flap
,”
AIAA
Paper No. 2004-41.10.2514/6.2004-41
9.
Chandrasekhara
,
M. S.
,
2010
, “
Optimum Gurney Flap Height Determination for ‘Lost-Lift’ Recovery in Compressible Dynamic Stall Control
,”
Aerosp. Sci. Technol.
,
14
(
8
), pp.
551
556
.10.1016/j.ast.2010.04.010
10.
Kinzel
,
M. P.
,
Maughmer
,
M. D.
, and
Duque
,
E. P. N.
,
2010
, “
Numerical Investigation on the Aerodynamics of Oscillating Airfoils With Deployable Gurney Flaps
,”
AIAA J.
,
48
(
7
), pp.
1457
1469
.10.2514/1.J050070
11.
Zanotti
,
A.
,
Grassi
,
D.
, and
Gibertini
,
G.
,
2014
, “
Experimental Investigation of a Trailing Edge L-Shaped Tab on a Pitching Airfoil in Deep Dynamic Stall Conditions
,”
Proc. Inst. Mech. Eng. Part G
,
228
(
12
), pp.
2371
2382
.10.1177/0954410013517089
12.
Alber
,
J.
,
Pechlivanoglou
,
G.
,
Paschereit
,
C. O.
,
Twele
,
J.
, and
Weinzierl
,
G.
,
2017
, “
Parametric Investigation of Gurney Flaps for the Use on Wind Turbine Blades
,”
ASME
Paper No. GT2017-64475.10.1115/GT2017-64475
13.
Chen
,
H.
, and
Qin
,
N.
,
2017
, “
Trailing-Edge Flow Control for Wind Turbine Performance and Load Control
,”
Renew. Energy
,
105
, pp.
419
435
.10.1016/j.renene.2016.12.073
14.
Bao
,
N.
,
Ma
,
H.
, and
Ye
,
Z.
,
2000
, “
Experimental Study of Wind Turbine Blade Power Augmentation Using Airfoil Flaps, Including the Gurney Flap
,”
Wind Eng.
,
24
(
1
), pp.
25
34
.10.1260/0309524001495387
15.
Zhao
,
W. L.
,
Liu
,
P. Q.
,
Zhu
,
J. Y.
, and
Qu
,
Q. L.
,
2011
, “
Numerical Investigation of Flow Control on Performance Enhancing by Mounting Gurney Flaps of a Large Horizontal Wind Turbines
,” Second International Conference on Artificial Intelligence, Management Science and Electronic Commerce (
AIMSEC
), Dengleng, China, Aug. 8–10, pp.
4111
4114
.10.1109/AIMSEC.2011.6010068
16.
Ismail
,
M. F.
, and
Vijayaraghavan
,
K.
,
2015
, “
The Effects of Aerofoil Profile Modification on a Vertical Axis Wind Turbine Performance
,”
Energy
,
80
, pp.
20
31
.10.1016/j.energy.2014.11.034
17.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Korakianitis
,
T.
,
2019
, “
CFD Analysis for the Performance of Gurney Flap on Aerofoil and Vertical Axis Turbine
,”
Int. J. Mech. Eng. Robot. Res.
, 8(3), pp.
385
392
.10.18178/ijmerr.8.3.385-392
18.
Zhu
,
H.
,
Hao
,
W.
,
Li
,
C.
, and
Ding
,
Q.
,
2019
, “
Numerical Study of Effect of Solidity on Vertical Axis Wind Turbine With Gurney Flap
,”
J. Wind Eng. Ind. Aerodyn.
,
186
, pp.
17
31
.10.1016/j.jweia.2018.12.016
19.
Ferreira
,
C. S.
,
Van Bussel
,
G.
, and
Van Kuik
,
G.
,
2007
, “
2D CFD Simulation of Dynamic Stall on a Vertical Axis Wind Turbine: Verification and Validation With PIV Measurements
,”
AIAA
Paper No. 2007-1367.10.2514/6.2007-1367
20.
Paraschivoiu
,
I.
,
2009
,
Wind Turbine Design: With Emphasis on Darrieus Concept
,
Presses Internationales Polytechnique
,
Montreal, PQ, Canada
.
21.
Di Rosa
,
D.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2019
, “
A Preliminary Assessment of the Impact of Gurney Flaps on the Aerodynamic Performance Augmentation of Darrieus Wind Turbines
,”
Res. Top. Wind Energy
,
8
, pp.
1
19
.10.1007/978-3-030-13531-7
22.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Di Rosa
,
D.
, and
Ferrara
,
G.
,
2019
, “
On the Use of Gurney Flaps for the Aerodynamic Performance Augmentation of Darrieus Wind Turbines
,”
Energy Convers. Manag.
,
184
, pp.
402
415
.10.1016/j.enconman.2019.01.068
23.
Balduzzi
,
F.
,
Holst
,
D.
,
Bianchini
,
A.
,
Church
,
B.
,
Wegner
,
F.
,
Pechlivanoglou
,
G.
,
Ferrari
,
L.
,
Ferrara
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2019
, “
Static and Dynamic Analysis of a NACA 0021 Airfoil Section at Low Reynolds Numbers Based on Experiments and Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051015
.10.1115/1.4041150
24.
Holst
,
D.
,
Balduzzi
,
F.
,
Bianchini
,
A.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Ferrara
,
G.
,
2019
, “
Static and Dynamic Analysis of a NACA 0021 Airfoil Section at Low Reynolds Numbers: Drag and Moment Coefficients
,”
ASME
Paper No. GT2019-90500.10.1115/GT2019-90500
25.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.10.1115/1.4030448
26.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F. A.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier-Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.10.1115/GT2015-42663
27.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Aerodynamics of Darrieus Wind Turbines Airfoils: The Impact of Pitching Moment
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p. 042602.10.1115/1.4034940
28.
Balduzzi
,
F.
,
Marten
,
D.
,
Bianchini
,
A.
,
Drofelnik
,
J.
,
Ferrari
,
L.
,
Campobasso
,
M. S.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
, and
Paschereit
,
C. O.
,
2018
, “
Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022602
.10.1115/1.4037750
29.
Holst
,
D.
,
Church
,
B.
,
Wegner
,
F.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “
Experimental Analysis of a NACA 0021 Airfoil Under Dynamic Angle of Attack Variation and Low Reynolds Numbers
,”
ASME
Paper No. GT2018-76514.10.1115/GT2018-76514
30.
Holst
,
D.
,
Church
,
B.
,
Pechlivanoglou
,
G.
,
Tüzüner
,
E.
,
Saverin
,
J.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Experimental Analysis of a NACA 0021 Airfoil Section Through 180-Degree Angle of Attack at Low Reynolds Numbers for Use in Wind Turbine Analysis
,”
ASME
Paper No. GT2017-63643.10.1115/GT2017-63643
31.
Balduzzi
,
F.
,
Zini
,
M.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2019
, “
Development of a Computational Fluid Dynamics Methodology to Reproduce the Effects of Macroturbulence on Wind Turbines and Its Application to the Particular Case of a VAWT
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111010
.10.1115/1.4044231
32.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renew. Energy
,
85
, pp.
419
435
.10.1016/j.renene.2015.06.048
33.
Lu
,
K.
,
Xie
,
Y. H.
,
Zhang
,
D.
, and
Lan
,
J. B.
,
2013
, “
Numerical Investigations Into the Asymmetric Effects on the Aerodynamic Response of a Pitching Airfoil
,”
J. Fluids Struct.
,
39
, pp.
76
86
.10.1016/j.jfluidstructs.2013.02.001
34.
Rahromostaqim
,
M.
,
Posa
,
A.
, and
Balaras
,
E.
,
2016
, “
Numerical Investigation of the Performance of Pitching Airfoils at High Amplitudes
,”
AIAA J.
,
54
(
8
), pp.
2221
2232
.10.2514/1.J054424
You do not currently have access to this content.