Abstract

Can-annular combustors can feature azimuthal instabilities even if the acoustic coupling between the individual cans is weak. Recently, various studies have focused on modeling the acoustic communication between adjacent cans in can-annular systems. In this study, a coupling model is presented that, in contrast to previous models, includes the effect of density fluctuations, mean flow, and dissipative effects at the connection gaps. By assuming plane acoustic waves inside each can and exploiting the discrete rotational symmetry of the can-annular system, the acoustic can-to-can interaction can be represented by an effective Bloch-type impedance. A single can modeled with the effective impedance at the downstream end emulates the acoustic response of the entire can-annular arrangement. We then propose the idea of installing a liner just upstream of the first turbine stage to damp azimuthal instabilities. By using the proposed can-to-can coupling model, we discuss in detail the effect that the impedance of the liner has on the effective reflection coefficient for different Bloch wavenumbers. In the low-frequency limit, we derive an analytical condition for achieving maximum damping at a specific Bloch-number. We show that the damping of azimuthal modes depends on the porosity of the liner, mean flow parameters and the Bloch-structure of the mode. These results suggest the possibility of targeting the damping of modes of certain azimuthal order by geometric variations of the liner or of the connection gap. As an exemplary application of the theory, we setup a network model of a generic industrial 12-can combustor and investigate a cluster of acoustic and thermoacoustic eigenvalues for a varying liner porosity. The findings of this study provide a deeper understanding of the mechanisms that drive the can-to-can acoustic communication, and open the path for devising passive damping strategies aimed at stabilizing specific modes in can-annular combustors.

References

1.
Kaufmann
,
P.
,
Krebs
,
W.
,
Valdes
,
R.
, and
Wever
,
U.
,
2008
, “
3D Thermoacoustic Properties of Single Can and Multi Can Combustor Configurations
,”
ASME
Paper No. GT2008-50755.10.1115/GT2008-50755
2.
Panek
,
L.
,
Huth
,
M.
, and
Farisco
,
F.
,
2017
, “
Thermo-Acoustic Characterization of Can-Can Interaction of a Can-Annular Combustion System Based on Unsteady CFD LES Simulation
,”
First Global Power and Propulsion Forum
, Zürich, Switzerland, Jan. 16–18, pp.
1
5
.https://www.researchgate.net/publication/317400221_THERMO-ACOUSTIC_CHARACTERIZATION_OF_CAN-CAN_INTERACTION_OF_A_CAN-ANNULAR_COMBUSTION_SYSTEM_BASED_ON_UNSTEADY_CFD_LES_SIMULATION
3.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
4.
Jegal
,
H.
,
Moon
,
K.
,
Gu
,
J.
,
Li
,
L. K.
, and
Kim
,
K. T.
,
2019
, “
Mutual Synchronization of Two Lean-Premixed Gas Turbine Combustors: Phase Locking and Amplitude Death
,”
Combust. Flame
,
206
, pp.
424
437
.10.1016/j.combustflame.2019.05.017
5.
Moon
,
K.
,
Jegal
,
H.
,
Yoon
,
C.
, and
Kim
,
K. T.
,
2020
, “
Cross-Talk-Interaction-Induced Combustion Instabilities in a Can-Annular Lean-Premixed Combustor Configuration
,”
Combust. Flame
,
220
, pp.
178
188
.10.1016/j.combustflame.2020.06.041
6.
Haeringer
,
M.
,
Fournier
,
G. J. J.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2020
, “
A Strategy to Tune Acoustic Terminations of Single-Can Test-Rigs to Mimic Thermoacoustic Behavior of a Full Engine
,”
ASME J. Eng. Gas Turbines Power
, 143(7), p. 071029.10.1115/1.4048642
7.
von Saldern
,
J.
,
Orchini
,
A.
, and
Moeck
,
J.
,
2020
, “
Analysis of Thermoacoustic Modes in Can-Annular Combustors Using Effective Bloch-Type Boundary Conditions
,”
ASME
Paper No. GT2020-14665.10.1115/GT2020-14665
8.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
9.
Howe
,
M.
,
1979
, “
On the Theory of Unsteady High Reynolds Number Flow Through a Circular Aperture
,”
Proc. R. Soc. London, Ser. A
,
366
, pp.
205
223
.10.1098/rspa.1979.0048
10.
Bloch
,
F.
,
1929
, “
Über Die Quantenmechanik Der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
(
7–8
), pp.
555
600
.10.1007/BF01339455
11.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.10.1115/1.4032335
12.
Luong
,
T.
,
Howe
,
M.
, and
McGowan
,
R.
,
2005
, “
On the Rayleigh Conductivity of a Bias-Flow Aperture
,”
J. Fluids Struct.
,
21
(
8
), pp.
769
778
.10.1016/j.jfluidstructs.2005.09.010
13.
Peat
,
K. S.
,
1988
, “
A Numerical Decoupling Analysis of Perforated Pipe Silencer Elements
,”
J. Sound Vib.
,
123
(
2
), pp.
199
212
.10.1016/S0022-460X(88)80106-8
14.
Eldredge
,
J. D.
, and
Dowling
,
A. P.
,
2003
, “
The Absorption of Axial Acoustic Waves by a Perforated Liner With Bias Flow
,”
J. Fluid Mech.
,
485
, pp.
307
335
.10.1017/S0022112003004518
15.
Lahiri
,
C.
, and
Bake
,
F.
,
2017
, “
A Review of Bias Flow Liners for Acoustic Damping in Gas Turbine Combustors
,”
J. Sound Vib.
,
400
, pp.
564
605
.10.1016/j.jsv.2017.04.005
16.
Bauer
,
A. B.
,
1977
, “
Impedance Theory and Measurements on Porous Acoustic Liners
,”
J. Aircr.
,
14
(
8
), pp.
720
728
.10.2514/3.58844
17.
Rice
,
E. J.
,
1976
, “
Theoretical Study of the Acoustic Impedance of Orifices in the Presence of a Steady Grazing Flow
,”
J. Acoust. Soc. Am.
,
59
(
S1
), pp.
S32
S32
.10.1121/1.2002637
18.
Dean
,
L. W.
,
1975
, “
Coupling of Helmholtz Resonators to Improve Acoustic Liners for Turbofan Engines at Low Frequency
,”
Pratt & Whitney Aircraft Division
, East Hartford, CT, Technical Report No.
NASA CR-134912
.https://www.semanticscholar.org/paper/Coupling-of-Helmholtz-resonators-to-improve-liners-Dean/1ad69a540ff3097f266f3970bf0b04335a3a2c33
19.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
20.
Polifke
,
W.
,
2010
, “
Low-Order Analysis Tools for Aero- and Low-Order Analysis Tools for Aero- and Thermo-Acoustic Instabilities
,”
Advances in Aero-Acoustics and Thermo-Acoustics
(Lecture Series),
Von Karman Institute
, Sint-Genesius-Rode, Belgium. https://www.researchgate.net/publication/255738493_Low-Order_Analysis_Tools_for_Aero-_and_Thermo-Acoustic_Instabilities
You do not currently have access to this content.