Abstract

In this study, we systematically analyze the effects of hydrogen enrichment in the well-known PRECCINSTA burner, a partially premixed swirl-stabilized methane/air combustor. Keeping the equivalence ratio and thermal power constant, we vary the hydrogen percentage in the fuel. Successive increments in hydrogen fuel fraction increase the adiabatic flame temperature and also shift the dominant frequencies of acoustic pressure fluctuations to higher values. Under hydrogen enrichment, we observe the emergence of periodicity in the combustor resulting from the interaction between acoustic modes. As a result of the interaction between these modes, the combustor exhibits a variety of dynamical states, including period-1 limit cycle oscillations (LCO), period-2 LCO, chaotic oscillations, and intermittency. The flame and flow behavior is found to be significantly different for each dynamical state. Analyzing the coupled behavior of the acoustic pressure and the heat release rate oscillations during the states of thermoacoustic instability, we report the occurrence of 2:1 frequency-locking during period-2 LCO, where two cycles of acoustic pressure lock with one cycle of the heat release rate. During period-1 LCO, we notice 1:1 frequency-locking, where both acoustic pressure and heat release rate repeat their behavior in every cycle.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,” American Institute of Aeronautics and Astronautics, Reston, VA.
2.
Schefer
,
R. W.
,
Wicksall
,
D.
, and
Agrawal
,
A.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combustion Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
3.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
4.
Schefer
,
R.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
5.
Jackson
,
G. S.
,
Sai
,
R.
,
Plaia
,
J. M.
,
Boggs
,
C. M.
, and
Kiger
,
K. T.
,
2003
, “
Influence of h2 on the Response of Lean Premixed CH4 Flames to High Strained Flows
,”
Combust. Flame
,
132
(
3
), pp.
503
511
.10.1016/S0010-2180(02)00496-0
6.
Kim
,
H. S.
,
Arghode
,
V. K.
,
Linck
,
M. B.
, and
Gupta
,
A. K.
,
2009
, “
Hydrogen Addition Effects in a Confined Swirl-Stabilized Methane-Air Flame
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1054
1062
.10.1016/j.ijhydene.2008.10.034
7.
Emadi
,
M.
,
Karkow
,
D.
,
Salameh
,
T.
,
Gohil
,
A.
, and
Ratner
,
A.
,
2012
, “
Flame Structure Changes Resulting From Hydrogen-Enrichment and Pressurization for Low-Swirl Premixed Methane–Air Flames
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
10397
10404
.10.1016/j.ijhydene.2012.04.017
8.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2015
, “
Thermo-Acoustic Instabilities in Lean Premixed Swirl-Stabilized Combustion and Their Link to Acoustically Coupled and Decoupled Flame Macrostructures
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3273
3282
.10.1016/j.proci.2014.07.002
9.
Palies
,
P.
,
Ilak
,
M.
, and
Cheng
,
R.
,
2017
, “
Transient and Limit Cycle Combustion Dynamics Analysis of Turbulent Premixed Swirling Flames
,”
J. Fluid Mech.
,
830
, pp.
681
707
.10.1017/jfm.2017.575
10.
Zhang
,
J.
, and
Ratner
,
A.
,
2019
, “
Experimental Study on the Excitation of Thermoacoustic Instability of Hydrogen-Methane/Air Premixed Flames Under Atmospheric and Elevated Pressure Conditions
,”
Int. J. Hydrogen Energy
,
44
(
39
), pp.
21324
21335
.10.1016/j.ijhydene.2019.06.142
11.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
12.
Lartigue
,
G.
,
Meier
,
U.
, and
Berat
,
C.
,
2004
, “
Experimental and Numerical Investigation of Self-Excited Combustion Oscillations in a Scaled Gas Turbine Combustor
,”
Appl. Therm. Eng.
,
24
(
11–12
), pp.
1583
1592
.10.1016/j.applthermaleng.2003.10.026
13.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
14.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
15.
Bénard
,
P.
,
Lartigue
,
G.
,
Moureau
,
V.
, and
Mercier
,
R.
,
2019
, “
Large-Eddy Simulation of the Lean-Premixed Preccinsta Burner With Wall Heat Loss
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5233
5243
.10.1016/j.proci.2018.07.026
16.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
17.
Wang
,
P.
,
Platova
,
N.
,
Fröhlich
,
J.
, and
Maas
,
U.
,
2014
, “
Large Eddy Simulation of the Preccinsta Burner
,”
Int. J. Heat Mass Transfer
,
70
, pp.
486
495
.10.1016/j.ijheatmasstransfer.2013.11.025
18.
Chterev
,
I.
, and
Boxx
,
I.
,
2019
, “
Flame Topology and Combustion Instability Limits of Lean Premixed Hydrogen Enriched Flames
,”
27th International Colloquium on the Dynamics of Explosions and Reactive Systems
, Beijing, China, July 28–Aug. 2.https://www.researchgate.net/publication/337076805_Flame_Topology_and_Combustion_Instability_Limits_of_Lean_Premixed_Hydrogen_Enriched_Flames
19.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
John Wiley & Sons
, Hoboken, NJ.
20.
Sujith
,
R.
, and
Unni
,
V. R.
,
2021
, “
Dynamical Systems and Complex Systems Theory to Study Unsteady Combustion
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3445
3462
.10.1016/j.proci.2020.07.081
21.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
22.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Wahi
,
P.
, and
Sujith
,
R. I.
,
2012
, “
Route to Chaos for Combustion Instability in Ducted Laminar Premixed Flames
,”
Chaos
,
22
(
2
), p.
023129
.10.1063/1.4718725
23.
Culick
,
F.
,
1994
, “
Some Recent Results for Nonlinear Acoustics in Combustion Chambers
,”
AIAA J.
,
32
(
1
), pp.
146
169
.10.2514/3.11962
24.
Lieuwen
,
T. C.
,
2002
, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
,
18
(
1
), pp.
61
67
.10.2514/2.5898
25.
Sterling
,
J. D.
,
1993
, “
Nonlinear Analysis and Modelling of Combustion Instabilities in a Laboratory Combustor
,”
Combust. Sci. Technol.
,
89
(
1–4
), pp.
167
179
.10.1080/00102209308924107
26.
Keanini
,
R.
,
Yu
,
K.
, and
Daily
,
J.
,
1989
, “
Evidence of a Strange Attractor in Ramjet Combustion
,”
AIAA
Paper No. AIAA-89-0624.10.2514/6.1989-624
27.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Karimi
,
N.
,
Sailor
,
A.
,
Mastorakos
,
E.
,
Dowling
,
A. P.
, and
Paschereit
,
C. O.
,
2015
, “
Chaos in an Imperfectly Premixed Model Combustor
,”
Chaos
,
25
(
2
), p.
023101
.10.1063/1.4906943
28.
Nair
,
V.
,
Thampi
,
G.
,
Karuppusamy
,
S.
,
Gopalan
,
S.
, and
Sujith
,
R.
,
2013
, “
Loss of Chaos in Combustion Noise as a Precursor of Impending Combustion Instability
,”
Int. J. Spray Combust. Dyn.
,
5
(
4
), pp.
273
290
.10.1260/1756-8277.5.4.273
29.
Gotoda
,
H.
,
Nikimoto
,
H.
,
Miyano
,
T.
, and
Tachibana
,
S.
,
2011
, “
Dynamic Properties of Combustion Instability in a Lean Premixed Gas-Turbine Combustor
,”
Chaos
,
21
(
1
), p.
013124
.10.1063/1.3563577
30.
Premraj
,
D.
,
Pawar
,
S. A.
,
Kabiraj
,
L.
, and
Sujith
,
R.
,
2020
, “
Strange Nonchaos in Self-Excited Singing Flames
,”
Europhys. Lett.
,
128
(
5
), p.
54005
.10.1209/0295-5075/128/54005
31.
Kabiraj
,
L.
, and
Sujith
,
R.
,
2012
, “
Nonlinear Self-Excited Thermoacoustic Oscillations: Intermittency and Flame Blowout
,”
J. Fluid Mech.
,
713
(
376–397
), pp.
376
397
.10.1017/jfm.2012.463
32.
Nair
,
V.
,
Thampi
,
G.
, and
Sujith
,
R. I.
,
2014
, “
Intermittency Route to Thermoacoustic Instability in Turbulent Combustors
,”
J. Fluid Mech.
,
756
, pp.
470
487
.10.1017/jfm.2014.468
33.
Kheirkhah
,
S.
,
Cirtwill
,
J. M.
,
Saini
,
P.
,
Venkatesan
,
K.
, and
Steinberg
,
A. M.
,
2017
, “
Dynamics and Mechanisms of Pressure, Heat Release Rate, and Fuel Spray Coupling During Intermittent Thermoacoustic Oscillations in a Model Aeronautical Combustor at Elevated Pressure
,”
Combust. Flame
,
185
, pp.
319
334
.10.1016/j.combustflame.2017.07.017
34.
Pawar
,
S. A.
, and
Sujith
,
R. I.
,
2018
, “
Transition to Thermoacoustic Instability in a Turbulent Combustor
,”
J. Combust. Soc. Jpn.
,
60
(
192
), pp.
99
111
.10.20619/jcombsj.60.192_99
35.
Dutta
,
A. K.
,
Ramachandran
,
G.
, and
Chaudhuri
,
S.
,
2019
, “
Investigating Thermoacoustic Instability Mitigation Dynamics With a Kuramoto Model for Flamelet Oscillators
,”
Phys. Rev. E
,
99
(
3
), p.
032215
.10.1103/PhysRevE.99.032215
36.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
37.
Gotoda
,
H.
,
Shinoda
,
Y.
,
Kobayashi
,
M.
,
Okuno
,
Y.
, and
Tachibana
,
S.
,
2014
, “
Detection and Control of Combustion Instability Based on the Concept of Dynamical System Theory
,”
Phys. Rev. E
,
89
(
2
), p.
022910
.10.1103/PhysRevE.89.022910
38.
Pawar
,
S. A.
,
Mondal
,
S.
,
George
,
N. B.
, and
Sujith
,
R. I.
,
2018
, “
Synchronization Behaviour During the Dynamical Transition in Swirl-Stabilized Combustor: Temporal and Spatiotemporal Analysis
,”
AIAA
Paper No. AIAA 2018-0394.10.2514/6.AIAA 2018-0394
39.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
, Cambridge, UK.
40.
Sampath
,
R.
, and
Chakravarthy
,
S. R.
,
2016
, “
Investigation of Intermittent Oscillations in a Premixed Dump Combustor Using Time-Resolved Particle Image Velocimetry
,”
Combust. Flame
,
172
, pp.
309
325
.10.1016/j.combustflame.2016.06.018
41.
Aoki
,
C.
,
Gotoda
,
H.
,
Yoshida
,
S.
, and
Tachibana
,
S.
,
2020
, “
Dynamic Behavior of Intermittent Combustion Oscillations in a Model Rocket Engine Combustor
,”
J. Appl. Phys.
,
127
(
22
), p.
224903
.10.1063/5.0001900
42.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2004
, “
A New Test for Chaos in Deterministic Systems
,”
Proc. R. Soc. London, Ser. A
460
(
2042
), pp.
603
611
.10.1098/rspa.2003.1183
43.
Armand Eyebe Fouda
,
J.
,
Bodo
,
B.
,
Sabat
,
S. L.
, and
Effa
,
J. Y.
,
2014
, “
A Modified 0-1 Test for Chaos Detection in Oversampled Time Series Observations
,”
Int. J. Bifurcation Chaos
,
24
(
5
), p.
1450063
.10.1142/S0218127414500631
44.
Toker
,
D.
,
Sommer
,
F. T.
, and
D'Esposito
,
M.
,
2020
, “
A Simple Method for Detecting Chaos in Nature
,”
Commun. Biol.
,
3
(
1
), pp.
1
13
.10.1038/s42003-019-0715-9
You do not currently have access to this content.