Abstract

This paper uses a recently derived reduction procedure to study the contact interactions of an industrial blade undergoing large displacements. The reduction technique consists in projecting the dynamical problem onto a reduction basis composed of Craig–Bampton modes and a selection of their modal derivatives. The internal nonlinear forces due to large displacements are evaluated with the stiffness evaluation procedure and contact is numerically handled using Lagrange multipliers. The numerical strategy is applied on an open industrial compressor blade model based on the NASA rotor 37 blade in order to promote the reproducibility of results. Two contact scenarios are investigated: one with direct contact between the blade and the casing and one with an abradable material deposited on the casing. The influence of geometric nonlinearities is assessed in both cases. In particular, contact interaction maps and abradable coating wear pattern maps are used to identify the main interactions that can be detrimental to the engine integrity.

References

1.
Sakulkaew
,
S.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Cornelius
,
C.
, and
Montgomery
,
M.
,
2013
, “
Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance
,”
ASME J. Turbomach.
,
135
(
3
), p. 031030. 10.1115/1.4007547
2.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
3.
Nyssen
,
F.
,
Tableau
,
N.
,
Lavazec
,
D.
, and
Batailly
,
A.
,
2020
, “
Experimental and Numerical Characterization of a Ceramic Matrix Composite Shroud Segment Under Impact Loading
,”
J. Sound Vib.
,
467
, p.
115040
.10.1016/j.jsv.2019.115040
4.
Yi
,
M.
,
He
,
J.
,
Huang
,
B.
, and
Zhou
,
H.
,
1999
, “
Friction and Wear Behaviour and Abradability of Abradable Seal Coating
,”
Wear
,
231
(
1
), pp.
47
53
.10.1016/S0043-1648(99)00093-9
5.
Ma
,
X.
, and
Matthews
,
A.
,
2007
, “
Investigation of Abradable Seal Coating Performance Using Scratch Testing
,”
Surf. Coat. Technol.
,
202
(
4–7
), pp.
1214
1220
.10.1016/j.surfcoat.2007.07.076
6.
Vakakis
,
A. F.
,
1992
, “
Dynamics of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
Acta Mech.
,
95
(
1–4
), pp.
197
226
.10.1007/BF01170813
7.
Grolet
,
A.
, and
Thouverez
,
F.
,
2011
, “
Vibration Analysis of a Nonlinear System With Cyclic Symmetry
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
022502
.10.1115/1.4001989
8.
Picou
,
A.
,
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mbaye
,
M.
,
2019
, “
Mistuning Analysis of a Detuned Bladed-Disk With Geometrical Nonlinearities
,”
ASME
Paper No. GT2019-90820.10.1115/GT2019-90820
9.
Balmaseda
,
M.
,
Jacquet-Richardet
,
G.
,
Placzek
,
A.
, and
Tran
,
D.-M.
,
2019
, “
Reduced Order Models for Nonlinear Dynamic Analysis With Application to a Fan Blade
,”
ASME
Paper No. GT2019-90813.10.1115/GT2019-90813
10.
Di Palma
,
N.
,
Martin
,
A.
,
Thouverez
,
F.
, and
Courtier
,
V.
,
2019
, “
Nonlinear Harmonic Analysis of a Blade Model Subjected to Large Geometrical Deflection and Internal Resonance
,”
ASME
Paper No. GT2019-91213.10.1115/GT2019-91213
11.
Kerschen
,
G.
,
Golinval
,
J.-C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
147
169
.10.1007/s11071-005-2803-2
12.
Weeger
,
O.
,
Wever
,
U.
, and
Simeon
,
B.
,
2016
, “
On the Use of Modal Derivatives for Nonlinear Model Order Reduction
,”
Int. J. Numer. Methods Eng.
,
108
(
13
), pp.
1579
1602
.10.1002/nme.5267
13.
Wu
,
L.
, and
Tiso
,
P.
,
2016
, “
Nonlinear Model Order Reduction for Flexible Multibody Dynamics: A Modal Derivatives Approach
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
405
425
.10.1007/s11044-015-9476-5
14.
Longobardi
,
P.
,
2019
, “
Model Order Reduction for Nonlinear Vibrations of Geometrically Nonlinear Structures
,” Master thesis,
Politecnico di Torino
,
Italy
.
15.
Joannin
,
C.
,
Chouvion
,
B.
,
Thouverez
,
F.
,
Ousty
,
J.-P.
, and
Mbaye
,
M.
,
2017
, “
A Nonlinear Component Mode Synthesis Method for the Computation of Steady-State Vibrations in Non-Conservative Systems
,”
Mech. Syst. Signal Process.
,
83
, pp.
75
92
.10.1016/j.ymssp.2016.05.044
16.
Joannin
,
C.
,
Thouverez
,
F.
, and
Chouvion
,
B.
,
2018
, “
Reduced-Order Modelling Using Nonlinear Modes and Triple Nonlinear Modal Synthesis
,”
Comput. Struct.
,
203
, pp.
18
33
.10.1016/j.compstruc.2018.05.005
17.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mignolet
,
M. P.
,
2012
, “
Computational Stochastic Statics of an Uncertain Curved Structure With Geometrical Nonlinearity in Three-Dimensional Elasticity
,”
Comput. Mech.
,
49
(
1
), pp.
87
97
.10.1007/s00466-011-0629-y
18.
Touzé
,
C.
,
Vidrascu
,
M.
, and
Chapelle
,
D.
,
2014
, “
Direct Finite Element Computation of Non-Linear Modal Coupling Coefficients for Reduced-Order Shell Models
,”
Comput. Mech.
,
54
(
2
), pp.
567
580
.10.1007/s00466-014-1006-4
19.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2009
, “
Discrete Empirical Interpolation for Nonlinear Model Reduction
,”
Proceedings of the 48th IEEE Conference
, Shanghai, China, Dec. 15–18, pp.
4316
4321
.https://www.caam.rice.edu/~sorensen/Talks/SIAM_CSE09/SIAM_CSE09T.pdf
20.
McEwan
,
M. I.
,
Wright
,
J. R.
,
Cooper
,
J. E.
, and
Leung
,
A. Y.
,
2001
, “
A Combined Modal/Finite Element Analysis Technique for the Dynamic Response of a Non-Linear Beam to Harmonic Excitation
,”
J. Sound Vib.
,
243
(
4
), pp.
601
624
.10.1006/jsvi.2000.3434
21.
Muravyov
,
A.
, and
Rizzi
,
S.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
81
(
15
), pp.
1513
1523
.10.1016/S0045-7949(03)00145-7
22.
Sinha
,
S. K.
,
2013
, “
Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event With Contact-Impact Rub Loads
,”
J. Sound Vib.
,
332
(
9
), pp.
2253
2283
.10.1016/j.jsv.2012.11.033
23.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
,
1991
, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Methods Eng.
,
32
(
1
), pp.
103
128
.10.1002/nme.1620320107
24.
Ma
,
H.
,
Wang
,
D.
,
Tai
,
X.
, and
Wen
,
B.
,
2017
, “
Vibration Response Analysis of Blade-Disk Dovetail Structure Under Blade Tip Rubbing Condition
,”
J. Vib. Control
,
23
(
2
), pp.
252
271
.10.1177/1077546315575835
25.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
26.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J.-C.
, and
Batailly
,
A.
,
2020
, “
Comparative Study of Blades Reduced Order Models With Geometrical Nonlinearities and Contact Interfaces
,”
ASME
Paper No. GT2020-14882.10.1115/GT2020-14882
27.
Batailly
,
A.
,
Legrand
,
M.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2010
, “
Assessment of Reduced Models for the Detection of Modal Interaction Through Rotor Stator Contacts
,”
J. Sound Vib.
,
329
(
26
), pp.
5546
5562
.10.1016/j.jsv.2010.07.018
28.
Legrand
,
M.
,
Batailly
,
A.
,
Magnain
,
B.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2012
, “
Full Three-Dimensional Investigation of Structural Contact Interactions in Turbomachines
,”
J. Sound Vib.
,
331
(
11
), pp.
2578
2601
.10.1016/j.jsv.2012.01.017
29.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p. 082504.10.1115/1.4006446
30.
Batailly
,
A.
,
Agrapart
,
Q.
,
Millecamps
,
A.
, and
Brunel
,
J.-F.
,
2016
, “
Experimental and Numerical Simulation of a Rotor/Stator Interaction Event Localized on a Single Blade Within an Industrial High-Pressure Compressor
,”
J. Sound Vib.
,
375
, pp.
308
331
.10.1016/j.jsv.2016.03.016
31.
Craig
,
R. R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
32.
Tiso
,
P.
,
2011
, “
Optimal Second Order Reduction Basis Selection for Nonlinear Transient Analysis
,”
Proceedings of the International Modal Analysis Conference (IMAC) XXIX
, Jacksonville, FL, Jan. 31–Feb. 3, pp.
27
39
.10.1007/978-1-4419-9299-4_3
33.
Wu
,
L.
,
Tiso
,
P.
, and
van Keulen
,
F.
,
2016
, “
A Modal Derivatives Enhanced Craig-Bampton Method for Geometrically Nonlinear Structural Dynamics
,”
Proceedings of the 27th International Conference on Noise and Vibration Engineering
, Leuven, Belgium, Sept. 19–21, pp.
3615
3624
.https://research.tudelft.nl/en/publications/a-modal-derivatives-enhanced-craig-bampton-method-for-geometrical
34.
Slaats
,
P.
,
de Jongh
,
J.
, and
Sauren
,
A.
,
1995
, “
Model Reduction Tools for Nonlinear Structural Dynamics
,”
Comput. Struct.
,
54
(
6
), pp.
1155
1171
.10.1016/0045-7949(94)00389-K
35.
Idelsohn
,
S. R.
, and
Cardona
,
A.
,
1985
, “
A Reduction Method for Nonlinear Structural Dynamic Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
3
), pp.
253
279
.10.1016/0045-7825(85)90125-2
36.
Tiso
,
P.
,
2011
, “
Effective Modal Derivatives Based Reduction Method for Geometrically Nonlinear Structures
,”
ASME
Paper No. DETC2011-48315.10.1115/DETC2011-48315
37.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mbaye
,
M.
,
2014
, “
Geometric Nonlinear Dynamic Analysis of Uncertain Structures With Cyclic Symmetry. Application to a Mistuned Industrial Bladed Disk
,”
Proceedings of the 26th International Conference on Noise and Vibration Engineering
, Leuven, Belgium, Sept. 15–17, pp.
4481
4494
.
38.
Givois
,
A.
,
Grolet
,
A.
,
Thomas
,
O.
, and
Deü
,
J. F.
,
2019
, “
On the Frequency Response Computation of Geometrically Nonlinear Flat Structures Using Reduced-Order Finite Element Models
,”
Nonlinear Dyn.
,
97
(
2
), pp.
1747
1781
.10.1007/s11071-019-05021-6
39.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2012
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), pp.
1
11
.10.1115/1.4004951
40.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05
,” NASA, Cleveland, OH, Report No.
NASA TP 1659
.https://www.semanticscholar.org/paper/Performance-of-single-stage-axial-flow-transonic-of-Moore-Reid/7f13e7f3cbee9d72b2df49aa1d541ec5766f0b61
41.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly-Loaded, High Speed Inlet Stages for an Advanced High-Pressure Ratio Core Compressor
,” NASA, Cleveland, OH, Report No.
NASA TP 1337
.
42.
Denton
,
J. D.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm. Sci.
,
6
(
1
), pp.
1
13
.10.1007/s11630-997-0010-9
You do not currently have access to this content.