Abstract

Film cooling effect on trailing edge cutback with land extensions (i.e., landed case) was numerically investigated with the delayed-detached eddy simulation (DDES) method. At three rib geometries (i.e., inline rib arrays, six-row pin-fin arrays, and five-row pin-fin arrays) and five blowing ratios (i.e., M = 0.5, 0.8, 1.1, 1.5, and 2.0), film cooing effectiveness, coherent vortex structures, and discharge coefficients for the landed cases were analyzed and compared with baseline cases (i.e., cutback without land extensions). The results show that land extensions have significant influences on coherent flow structures, vortex energy levels, film cooling effectiveness, and discharge coefficients in cutback region. Different from the baseline cases, the dominant vortex structures in landed cases exhibit the “double helix” (for cutback with inline rib array) or “strip” pattern (for cutback with pin-fin arrays), and the thickness of mixing region in landed cases is decreased. Among three rib geometries, the trailing edge cutback with six-row pin-fin arrays has the worst cooling effect for both baseline and landed cases. Compared with the baseline cases, the discharge coefficients for the landed cases are decreased by about 21.4%. With land extensions, the overall film cooling effectiveness on cutback is decreased first and then increased with increasing blowing ratio. Among all investigated cases, cutback with five-row pin-fin arrays for the landed case performs the best film cooling effect at M = 0.5.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed., CRC Press,
Taylor & Francis Group
, New York.
2.
Zaretsky
,
E. V.
,
Litt
,
J. S.
,
Hendricks
,
R. C.
, and
Soditus
,
S. M.
,
2012
, “
Determination of Turbine Blade Life From Engine Field Data
,”
J. Propul. Power
,
28
(
6
), pp.
1156
1167
.10.2514/1.B34375
3.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.10.1115/1.2103094
4.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2011
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils-External Cooling Performance of Various Internal Pin Fin Configurations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041006
.10.1115/1.4002964
5.
Choi
,
J. H.
,
Mhetras
,
S.
,
Han
,
J. C.
,
Lau
,
S. C.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Model With Internal Performance Blockages
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
1
), p.
012201
.10.1115/1.2780174
6.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2011
, “
Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge
,”
ASME
Paper No. GT2011-45355.10.1115/GT2011-45355
7.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2016
, “
Film Cooling Effectiveness Downstream of Trailing Edge Slots Including Cutback Surface Protuberances
,”
Int. J. Turbomach. Propul. Power
,
1
(
1
), p.
4
.10.3390/ijtpp1010004
8.
Gurram
,
N.
,
Ireland
,
P. T.
,
Wong
,
T. H.
, and
Self
,
K. P.
,
2016
, “
Study of Film Cooling in the Trailing Edge Region of a Turbine Rotor Blade in High Speed Flow Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2016-57356.10.1115/GT2016-57356
9.
Barigozzi
,
G.
,
Perdichizzi
,
A.
, and
Ravell
,
S. I.
,
2012
, “
Pressure Side and Cutback Trailing Edge Film Cooling in a Linear Nozzle Vane Cascade at Different Mach Numbers
,”
ASME J. Turbomach.
,
134
(
5
), p.
051037
.10.1115/1.4004825
10.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
, pp.
37
50
.10.1016/j.ijheatfluidflow.2012.07.001
11.
Barigozzi
,
G.
,
Ravelli
,
S.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2013
, “
Effects of Injection Conditions and Mach Number on Unsteadiness Arising Within Coolant Jets Over a Pressure Side Vane Surface
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1220
1230
.10.1016/j.ijheatmasstransfer.2013.09.007
12.
Shi
,
L. L.
,
Yao
,
S. C.
, and
Dai
,
R.
,
2018
, “
Coherent Structures in the Wake Behind a Trailing Edge Cutback
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
329
344
.10.1016/j.expthermflusci.2018.02.021
13.
Ling
,
J.
,
Elkins
,
C. J.
,
Benson
,
M. J.
,
Yapa
,
S. D.
, and
Eaton
,
J. K.
,
2013
, “
Measurements of a Trailing Edge Slot Film Cooling Geometry Designed for Reduced Coolant Flow Rate and High Surface Effectiveness
,”
ASME
Paper No. GT2013-94292.10.1115/GT2013-94292
14.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
The Effect of Land Taper Angle on Trailing Edge Slot Film Cooling
,”
ASME J. Turbomach.
,
137
(
7
), p.
071003
.10.1115/1.4029174
15.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.10.1115/1.2137739
16.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2014
, “
Application of Unsteady Computational Fluid Dynamics Methods to Trailing Edge Cutback Film Cooling
,”
ASME J. Turbomach.
,
136
(
12
), p.
121006
.10.1115/1.4028238
17.
Ivanova
,
E.
,
Ledezma
,
G.
,
Wang
,
G.
, and
Laskowski
,
G. M.
,
2015
, “
Experimental and Numerical Investigations of the Heat Transfer and Flow Field in a Trailing Edge Cooling Geometry: Part 2-LES and Hybrid RANS/LES Study
,”
ASME
Paper No. GT2015-43603.10.1115/GT2015-43603
18.
Effendy
,
M.
,
Yao
,
Y. F.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2016
, “
DES Study of Blade Trailing Edge Cutback Cooling Performance With Various Lip Thicknesses
,”
Appl. Therm. Eng.
,
99
, pp.
434
445
.10.1016/j.applthermaleng.2015.11.103
19.
Effendy
,
M.
,
Yao
,
Y. F.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2019
, “
Detached Eddy Simulation of Blade Trailing-Edge Cutback Cooling Performance at Various Ejection Slot Angles
,”
Int. J. Heat Fluid Flow
,
80
, p.
108487
.10.1016/j.ijheatfluidflow.2019.108487
20.
Gao
,
Y.
,
Yan
,
X.
,
Li
,
J.
, and
He
,
K.
,
2018
, “
Investigations Into Film Cooling and Unsteady Flow Characteristics in a Blade Trailing-Edge Cutback Region
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
5015
5029
.10.1007/s12206-018-0949-3
21.
Schneider
,
H.
,
Von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.10.1016/j.ijheatfluidflow.2010.06.010
22.
Schneider
,
H.
,
Von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2012
, “
Turbulent Heat Transfer and Large Coherent Structures in Trailing-Edge Cutback Film Cooling
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
101
120
.10.1007/s10494-011-9379-3
23.
Schneider
,
H.
,
Von Terzi
,
D.
,
Bauer
,
H.-J.
, and
Rodi
,
W.
,
2015
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
Int. J. Heat Fluid Flow
,
51
, pp.
110
119
.10.1016/j.ijheatfluidflow.2014.10.013
24.
Yan
,
X.
,
2020
, “
Very Large Eddy Simulation of Film Cooling Effectiveness on Trailing Edge Cutback
,”
ASME
Paper No. GT2020-15780.10.1115/GT2020-15780
25.
ANSYS, Inc
.,
2016
,
ANSYS CFX-Solver Theory Guide
,
ANSYS, Inc
.,
Canonsburg, PA
.
26.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.10.1017/S002211207400190X
27.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
You do not currently have access to this content.