Abstract

ricardo-vectis computational fluid dynamics simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognizant of the midcylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0 MPa) and pressure variation across the air intake valves(150, 300, and 450 mmH2O) on the interaction process were investigated at a valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PIV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process, the tumble motion diverted the spray plume slightly toward the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms, and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300, and 450 mmH2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.

References

1.
Stansfield
,
P.
,
Wigley
,
G.
,
Justham
,
T.
,
Catto
,
J.
, and
Pitcher
,
G.
,
2007
, “
PIV Analysis of In-Cylinder Flow Structures Over a Range of Realistic Engine Speeds
,”
Exp. Fluids
,
43
(
1
), pp.
135
146
.10.1007/s00348-007-0335-x
2.
Peterson
,
B.
,
Baum
,
E.
,
Ding
,
C.-P.
,
Michaelis
,
D.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2017
, “
Assessment and Application of Tomographic PIV for the Spray-Induced Flow in an IC Engine
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3467
3475
.10.1016/j.proci.2016.06.114
3.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.,
138
(
5
), p.
052212
.10.1115/1.4033571
4.
Bari
,
S.
, and
Saad
,
I.
,
2013
, “
CFD Modelling of the Effect of Guide Vane Swirl and Tumble Device to Generate Better In-Cylinder Air Flow in a CI Engine Fuelled by Biodiesel
,”
Comput. Fluids
,
84
, pp.
262
269
.10.1016/j.compfluid.2013.06.011
5.
El-Adawy
,
M.
,
Heikal
,
M.
, and
Aziz
,
A. R. A.
,
2019
, “
Experimental Investigation of the In-Cylinder Tumble Motion Inside GDI Cylinder at Different Planes Under Steady-State Condition Using Stereoscopic-PIV
,”
J. Appl. Fluid Mech.
, 12(1), pp.
41
49
.10.29252/jafm.75.253.28885
6.
El-Adawy
,
M.
,
Heikal
,
M.
,
Aziz
,
A. R. A.
,
Siddiqui
,
M.
, and
Wahhab
,
H. A. A.
,
2017
, “
Experimental Study on an IC Engine In-Cylinder Flow Using Different Steady-State Flow Benches
,”
Alexandria Eng. J.
,
56
(
4
), pp.
727
736
.10.1016/j.aej.2017.08.015
7.
El-Adawy
,
M.
,
Heikal
,
M. R.
,
A Aziz
,
A. R.
,
Siddiqui
,
M. I.
, and
Munir
,
S.
,
2017
, “
Characterization of the Inlet Port Flow Under Steady-State Conditions Using PIV and POD
,”
Energies
,
10
(
12
), p.
1950
.10.3390/en10121950
8.
Zhang
,
Z.
,
Zhang
,
H.
,
Wang
,
T.
, and
Jia
,
M.
,
2014
, “
Effects of Tumble Combined With EGR (Exhaust Gas Recirculation) on the Combustion and Emissions in a Spark Ignition Engine at Part Loads
,”
Energy
,
65
, pp.
18
24
.10.1016/j.energy.2013.11.062
9.
Kim
,
S.
,
Yan
,
Y.
,
Nouri
,
J.
, and
Arcoumanis
,
C.
,
2013
, “
Effects of Intake Flow and Coolant Temperature on the Spatial Fuel Distribution in a Direct-Injection Gasoline Engine by PLIF Technique
,”
Fuel
,
106
, pp.
737
748
.10.1016/j.fuel.2012.10.002
10.
Brusiani
,
F.
,
Falfari
,
S.
, and
Cazzoli
,
G.
,
2014
, “
Tumble Motion Generation in Small Gasoline Engines: A New Methodological Approach for the Analysis of the Influence of the Intake Duct Geometrical Parameters
,”
Energy Procedia
,
45
, pp.
997
1006
.10.1016/j.egypro.2014.01.105
11.
Buhl
,
S.
,
Gleiss
,
F.
,
Köhler
,
M.
,
Hartmann
,
F.
,
Messig
,
D.
,
Brücker
,
C.
, and
Hasse
,
C.
,
2017
, “
A Combined Numerical and Experimental Study of the 3D Tumble Structure and Piston Boundary Layer Development During the Intake Stroke of a Gasoline Engine
,”
Flow, Turbul. Combust.
,
98
(
2
), pp.
579
600
.10.1007/s10494-016-9754-1
12.
El-Adawy
,
M.
,
Heikal
,
M.
, and
Aziz
,
A. R. A.
,
2018
, “
Stereoscopic Particle Image Velocimetry Measurements and Proper Orthogonal Decomposition Analysis of the in- Cylinder Flow of Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
, 141(4), p.
042204
.10.1115/1.4042068
13.
El-Adawy
,
M.
,
Heikal
,
M.
,
Aziz
,
A. R. A.
,
Adam
,
I.
,
Ismael
,
M.
,
Babiker
,
M.
,
Baharom
,
M.
, and
Abidin
,
E.
,
2018
, “
On the Application of Proper Orthogonal Decomposition (POD) for In- Cylinder Flow Analysis
,”
Energies
,
11
(
9
), p.
2261
.10.3390/en11092261
14.
Krishna
,
B. M.
, and
Mallikarjuna
,
J.
,
2011
, “
Effect of Engine Speed on In-Cylinder Tumble Flows in a Motored Internal Combustion Engine—An Experimental Investigation Using Particle Image Velocimetry
,”
J. Appl. Fluid Mech.
,
4
(
1
), pp.
1
14
.https://www.researchgate.net/publication/49619998_Effect_of_Engine_Speed_on_In-Cylinder_Tumble_Flows_in_a_Motored_Internal_Combustion_Engine_-_An_Experimental_Investigation_Using_Particle_Image_Velocimetry
15.
Bizon
,
K.
,
Continillo
,
G.
,
Mancaruso
,
E.
,
Merola
,
S.
, and
Vaglieco
,
B.
,
2010
, “
POD-Based Analysis of Combustion Images in Optically Accessible Engines
,”
Combust. Flame
,
157
(
4
), pp.
632
640
.10.1016/j.combustflame.2009.12.013
16.
Peterson
,
B.
, and
Sick
,
V.
,
2009
, “
Simultaneous Flow Field and Fuel Concentration Imaging at 4.8 kHz in an Operating Engine
,”
Appl. Phys. B
,
97
(
4
), pp.
887
895
.10.1007/s00340-009-3620-y
17.
Lee
,
K.
,
Bae
,
C.
, and
Kang
,
K.
,
2007
, “
The Effects of Tumble and Swirl Flows on Flame Propagation in a Four-Valve SI Engine
,”
Appl. Thermal Eng.
,
27
(
11–12
), pp.
2122
2130
.10.1016/j.applthermaleng.2006.11.011
18.
Fu
,
J.
,
Zhu
,
G.
,
Zhou
,
F.
,
Liu
,
J.
,
Xia
,
Y.
, and
Wang
,
S.
,
2016
, “
Experimental Investigation on the Influences of Exhaust Gas Recirculation Coupling With Intake Tumble on Gasoline Engine Economy and Emission Performance
,”
Energy Convers. Manage.
,
127
, pp.
424
436
.10.1016/j.enconman.2016.09.033
19.
Rabault
,
J.
,
Vernet
,
J. A.
,
Lindgren
,
B.
, and
Alfredsson
,
P. H.
,
2016
, “
A Study Using PIV of the Intake Flow in a Diesel Engine Cylinder
,”
Int. J. Heat Fluid Flow
,
62
, pp.
56
67
.10.1016/j.ijheatfluidflow.2016.06.020
20.
Zentgraf
,
F.
,
Baum
,
E.
,
Böhm
,
B.
,
Dreizler
,
A.
, and
Peterson
,
B.
,
2016
, “
On the Turbulent Flow in Piston Engines: Coupling of Statistical Theory Quantities and Instantaneous Turbulence
,”
Phys. Fluids
,
28
(
4
), p.
045108
.10.1063/1.4945785
21.
Agarwal
,
A. K.
,
Gadekar
,
S.
, and
Singh
,
A. P.
,
2018
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.,
140
(
1
), p.
012207
.10.1115/1.4037686
22.
Khalighi
,
B.
,
1995
, “
Multidimensional In-Cylinder Flow Calculations and Flow Visualization in a Motored Engine
,”
ASME J. Fluids Eng.
,
117
(
2
), pp.
282
288
.10.1115/1.2817142
23.
Khalighi
,
B.
,
Tahry
,
S. E.
,
Haworth
,
D.
, and
Huebler
,
M.
,
1995
, “
Computation and Measurement of Flow and Combustion in a Four-Valve Engine With Intake Variations
,”
SAE Trans.
, pp.
611
644
.10.4271/950287
24.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “Combustion and Emission Characterization n-Butanol Fueled HCCI Engine,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.10.1115/1.4027898
25.
Harshavardhan
,
B.
, and
Mallikarjuna
,
J.
,
2015
, “
Effect of Piston Shape on In-Cylinder Flows and Air–Fuel Interaction in a Direct Injection Spark Ignition Engine–a CFD Analysis
,”
Energy
,
81
, pp.
361
372
.10.1016/j.energy.2014.12.049
26.
Anderson
,
W.
,
Yang
,
J.
,
Brehob
,
D.
,
Vallance
,
J.
, and
Whiteaker
,
R.
,
1996
, “
Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation
,”
SAE
Paper No. 0148-7191.10.4271/0148-7191
27.
Han
,
Z.
,
Reitz
,
R. D.
,
Yang
,
J.
, and
Anderson
,
R. W.
,
1997
, “
Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine
,”
SAE
Paper No. 970625.10.4271/970625
28.
Georjon
,
T.
,
Bourguignon
,
E.
,
Duverger
,
T.
,
Delhaye
,
B.
, and
Voisard
,
P.
,
2000
, “
Characteristics of Mixture Formation and Combustion in a Spray-Guided Concept Gasoline Direct Injection Engine: An Experimental and Numerical Approach
,”
SAE
Paper No. 2000-01-0534.10.4271/2000-01-0534
29.
Zheng
,
Z.
,
Liu
,
C.
,
Tian
,
X.
, and
Zhang
,
X.
,
2015
, “
Numerical Study of the Effect of Piston Top Contour on GDI Engine Performance Under Catalyst Heating Mode
,”
Fuel
,
157
, pp.
64
72
.10.1016/j.fuel.2015.04.054
30.
Krishna
,
A. S.
,
Mallikarjuna
,
J.
, and
Kumar
,
D.
,
2016
, “
Effect of Engine Parameters on In-Cylinder Flows in a Two-Stroke Gasoline Direct Injection Engine
,”
Appl. Energy
,
176
, pp.
282
294
.10.1016/j.apenergy.2016.05.067
31.
Harshavardhan
,
B.
, and
Mallikarjuna
,
J.
,
2015
, “
Effect of Combustion Chamber Shape on In-Cylinder Flow and Air-Fuel Interaction in a Direct Injection Spark Ignition Engine-A CFD Analysis
,”
SAE
Paper No. 2015-26-0179.10.4271/2015-26-0179
32.
Sick
,
V.
,
Drake
,
M. C.
, and
Fansler
,
T. D.
,
2010
, “
High-Speed Imaging for Direct-Injection Gasoline Engine Research and Development
,”
Exp. Fluids
,
49
(
4
), pp.
937
947
.10.1007/s00348-010-0891-3
33.
Chen
,
H.
,
Hung
,
D. L.
,
Xu
,
M.
, and
Zhong
,
J.
,
2014
, “
A Dynamic Thresholding Technique for Extracting the Automotive Spark-Ignition Direct-Injection Pulsing Spray Characteristics
,”
J. Visual.
,
17
(
3
), pp.
197
209
.10.1007/s12650-014-0203-8
34.
Hentschel
,
W.
, Block, B., Hovestadt, T., Meyer, H., Ohmstede, G., Richter, V., Stiebels, B., and Winkler, A.,
2001
, “
Optical Diagnostics and CFD-Simulations to Support the Combustion Process Development of the Volkswagen FSI® Direct-Injection Gasoline Engine
,”
SAE
Paper No. 2001-01-3648.10.4271/2001-01-3648
35.
Chen
,
H.
,
Reuss
,
D. L.
,
Hung
,
D. L.
, and
Sick
,
V.
,
2013
, “
A Practical Guide for Using Proper Orthogonal Decomposition in Engine Research
,”
Int. J. Engine Res.
,
14
(
4
), pp.
307
319
.10.1177/1468087412455748
36.
Wang
,
Z.
,
He
,
X.
,
Wang
,
J.-X.
,
Shuai
,
S.
,
Xu
,
F.
, and
Yang
,
D.
,
2010
, “
Combustion Visualization and Experimental Study on Spark Induced Compression Ignition (SICI) in Gasoline HCCI Engines
,”
Energy Convers. Manage.
,
51
(
5
), pp.
908
917
.10.1016/j.enconman.2009.11.029
37.
Qin
,
W.
,
Hung
,
D. L.
, and
Xu
,
M.
,
2015
, “
Investigation of the Temporal Evolution and Spatial Variation of In-Cylinder Engine Fuel Spray Characteristics
,”
Energy Convers. Manage.
,
98
, pp.
430
439
.10.1016/j.enconman.2015.03.093
38.
Grousson
,
R.
, and
Mallick
,
S.
,
1977
, “
Study of Flow Pattern in a Fluid by Scattered Laser Light
,”
Appl. Opt.
,
16
(
9
), pp.
2334
2336
.10.1364/AO.16.002334
39.
Adrian
,
R. J.
,
1984
, “
Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow: Speckle Velocimetry versus Particle Image Velocimetry
,”
Appl. Optics
,
23
(
11
), pp.
1690
1691
.10.1364/AO.23.001690
40.
Bode
,
J.
,
Schorr
,
J.
,
Krüger
,
C.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2017
, “
Influence of Three-Dimensional In-Cylinder Flows on Cycle-to-Cycle Variations in a Fired Stratified DISI Engine Measured by Time-Resolved Dual-Plane PIV
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3477
3485
.10.1016/j.proci.2016.07.106
41.
Zeng
,
W.
,
Sjöberg
,
M.
,
Reuss
,
D. L.
, and
Hu
,
Z.
,
2017
, “
High-Speed PIV, Spray, Combustion Luminosity, and Infrared Fuel-Vapor Imaging for Probing Tumble-Flow-Induced Asymmetry of Gasoline Distribution in a Spray-Guided Stratified-Charge DISI Engine
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3459
3466
.10.1016/j.proci.2016.08.047
42.
Zhang
,
X.
,
Wang
,
T.
,
Jia
,
M.
,
Li
,
W.
,
Cui
,
L.
, and
Zhang
,
X.
,
2015
, “
The Interactions of In-Cylinder Flow and Fuel Spray in a Gasoline Direct Injection Engine With Variable Tumble
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071507
.10.1115/1.4029208
43.
Zeng
,
W.
,
Sjöberg
,
M.
,
Reuss
,
D. L.
, and
Hu
,
Z.
,
2016
, “
The Role of Spray-Enhanced Swirl Flow for Combustion Stabilization in a Stratified-Charge DISI Engine
,”
Combust. Flame
,
168
, pp.
166
185
.10.1016/j.combustflame.2016.03.015
44.
Peterson
,
B.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2014
, “
On the Ignition and Flame Development in a Spray-Guided Direct-Injection Spark-Ignition Engine
,”
Combust. Flame
,
161
(
1
), pp.
240
255
.10.1016/j.combustflame.2013.08.019
45.
Zeng
,
W.
,
Sjöberg
,
M.
, and
Reuss
,
D.
,
2014
, “
Using PIV Measurements to Determine the Role of the In-Cylinder Flow Field for Stratified DISI Engine Combustion
,”
SAE Int. J. Engines
,
7
(
2
), pp.
615
632
.10.4271/2014-01-1237
46.
Chen
,
H.
,
Lillo
,
P. M.
, and
Sick
,
V.
,
2016
, “
Three-Dimensional Spray–Flow Interaction in a Spark-Ignition Direct-Injection Engine
,”
Int. J. Engine Res.
,
17
(
1
), pp.
129
138
.10.1177/1468087415608741
47.
Zeng
,
W.
,
Sjöberg
,
M.
, and
Reuss
,
D. L.
,
2015
, “
Combined Effects of Flow/Spray Interactions and EGR on Combustion Variability for a Stratified DISI Engine
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
2907
2914
.10.1016/j.proci.2014.06.106
48.
JusthamJarvis
,
T.
,
Clarke
,
S.
,
Garner
,
A.
,
Hargrave
,
C. G.
, and
Halliwell
,
N.
,
2006
, “
Simultaneous Study of Intake and In-Cylinder IC Engine Flow Fields to Provide an Insight Into Intake Induced Cyclic Variations
,”
J. Phys. Conf. Series
,
45
(
1
), p.
146
.10.1088/1742-6596/45/1/019
49.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines a Literature Survey
,”
SAE
Paper No. 940987.10.4271/940987
50.
Chen
,
H.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2012
, “
On the Use and Interpretation of Proper Orthogonal Decomposition of In-Cylinder Engine Flows
,”
Meas. Sci. Technol.
,
23
(
8
), p.
085302
.10.1088/0957-0233/23/8/085302
51.
Pera
,
C.
,
Knop
,
V.
, and
Reveillon
,
J.
,
2015
, “
Influence of Flow and Ignition Fluctuations on Cycle-to-Cycle Variations in Early Flame Kernel Growth
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
2897
2905
.10.1016/j.proci.2014.07.037
52.
Stiehl
,
R.
,
Schorr
,
J.
,
Krüger
,
C.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2013
, “
In-Cylinder Flow and Fuel Spray Interactions in a Stratified Spray-Guided Gasoline Engine Investigated by High-Speed Laser Imaging Techniques
,”
Flow, Turbulence Combustion
,
91
(
3
), pp.
431
450
.10.1007/s10494-013-9500-x
53.
Peterson
,
B.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2011
, “
High-Speed Imaging Analysis of Misfires in a Spray-Guided Direct Injection Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3089
3096
.10.1016/j.proci.2010.07.079
54.
Stiehl
,
R.
,
Bode
,
J.
,
Schorr
,
J.
,
Krüger
,
C.
,
Dreizler
,
A.
, and
Böhm
,
B.
,
2016
, “
Influence of Intake Geometry Variations on In-Cylinder Flow and Flow–Spray Interactions in a Stratified Direct-Injection Spark-Ignition Engine Captured by Time-Resolved Particle Image Velocimetry
,”
Int. J. Engine Res.
,
17
(
9
), pp.
983
997
.10.1177/1468087416633541
55.
Müller
,
S.
,
Böhm
,
B.
,
Gleißner
,
M.
,
Grzeszik
,
R.
,
Arndt
,
S.
, and
Dreizler
,
A.
,
2010
, “
Flow Field Measurements in an Optically Accessible, Direct-Injection Spray-Guided Internal Combustion Engine Using High-Speed PIV
,”
Exp. Fluids
,
48
(
2
), pp.
281
290
.10.1007/s00348-009-0742-2
56.
El-Adawy
,
M.
,
Heikal
,
M. R.
,
Rashid
,
A.
,
Aziz
,
A.
, and
Opatola
,
R. A.
,
2021
, “
Stereoscopic Particle Image Velocimetry for Engine Flow Measurements: Principles and Applications
,”
Alexandria Eng. J.
,
60
(
3
), pp.
3327
3344
.10.1016/j.aej.2021.01.060
57.
Adawy
,
M. E.
,
Heikal
,
M. R.
,
A. Aziz
,
A. R.
,
Munir
,
S.
, and
Siddiqui
,
M. I.
,
2018
, “
Effect of Boost Pressure on the In-Cylinder Tumble-Motion of GDI Engine Under Steady-State Conditions Using Stereoscopic-PIV
,”
J. Appl. Fluid Mech.
,
11
(
3
), pp.
733
742
.10.29252/jafm.11.03.28506
58.
Ren
,
W.-M.
, and
Nally
,
J.
,
1998
, “
Computations of Hollow-Cone Sprays From a Pressure-Swirl Injector
,”
SAE
Paper No. 982610.10.4271/982610
59.
Arbeau
,
A.
,
Bazile
,
R.
,
Charnay
,
G.
, and
Gastaldi
,
P.
,
2004
, “
A New Application of the Particle Image Velocimetry (PIV) to the Air Entrainment in Gasoline Direct Injection Sprays
,”
SAE
Paper No. 2004-01-1948.10.4271/2004-01-1948
60.
Liu
,
Y.
,
Shen
,
Y.
,
You
,
Y.
, and
Zhao
,
F.
,
2012
, “
Numerical Simulation on Spray Atomization and Fuel-Air Mixing Process in a Gasoline Direct Injection Engine
,”
SAE
Paper No. 2012-01-0395.10.4271/2012-01-0395
You do not currently have access to this content.