Abstract

Within aeroengines, bearing chambers exhibit a highly complex two-phase environment as a result of the complex air/oil interactions. The desire to operate at both higher temperatures and shaft speeds requires a sufficient understanding of these systems for design optimization. Typically, bearings are used to support the radial and axial loads transmitted by the shafts and require oil for lubrication and cooling. These bearings are housed in bearing chambers that are sealed using airblown seals. Efficient scavenging systems ensure that the oil is collected and returned to the tank avoiding any unnecessary working of the oil. Previous work at the Gas Turbine and Transmissions Research Center (G2TRC) has highlighted the need for an adequate computational model which can appropriately model the oil shedding behavior from such bearings. Oil can breakup forming droplets and ligaments, subsequently forming thin and thick films driven by both gravity and shear. The objective of this paper is to explore the modeling capability of fully two-way coupled Eulerian thin film/discrete phase models (ETFM-DPM) applied to our simplified bearing chamber configuration. The models are created using openfoam and two-way coupling is employed, enabling Lagrangian droplets to either impinge on the film surface or be removed through effects such as film stripping, splashing, or edge separation. This paper focuses on the droplets, presenting statistics relating to size, velocity, impingement, and residence time, and provides insight into solution sensitivity to operational parameters including shaft speed and oil flow rate. This extends upon our previously published work and improves bearing chamber modeling capability.

References

1.
Glahn
,
A.
, and
Wittig
,
S.
,
1996
, “
Two-Phase Air/Oil Flow in Aero Engine Bearing Chambers: Characterization of Oil Film Flows
,”
ASME J. Eng. Gas Turbines Power
,
118
(
3
), pp.
578
583
.10.1115/1.2816687
2.
Nicoli
,
A.
,
Johnson
,
K.
, and
Jefferson-Loveday
,
R.
,
2021
, “
Simulation of a Simplified Aeroengine Bearing Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part I: Film Behaviour Near The Bearing
,”
ASME J. Eng. Gas Turbines Power
, epub.10.1115/1.4051561
3.
Santhosh
,
R.
,
Hee
,
J. L.
,
Simmons
,
K.
,
Johnson
,
G.
,
Hann
,
D.
, and
Walsh
,
M.
,
2017
, “
Experimental Investigation of Oil Shedding From an Aero-Engine Ball Bearing at Moderate Speeds
,”
ASME
Paper No. GT2017-63815.10.1115/GT2017-63815
4.
Hee
,
J. L.
,
Santhosh
,
R.
,
Simmons
,
K.
,
Johnson
,
G.
,
Hann
,
D.
, and
Walsh
,
M.
,
2017
, “
Oil Film Thickness Measurements on Surfaces Close to an Aero-Engine Ball Bearing Using Optical Techniques
,”
ASME
Paper No. GT2017-63813.10.1115/GT2017-63813
5.
Gorse
,
P.
,
Dullenkopf
,
K.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2008
, “
An Experimental Study on Droplet Generation in Bearing Chambers Caused by Roller Bearings
,”
ASME
Paper No. GT2008-51281.10.1115/GT2008-51281
6.
Adeniyi
,
A. A.
,
2015
, “
A Coupled Lagrangian-Eulerian Framework to Model Droplet to Film Interaction With Heat Transfer
,”
Ph.D. thesis
,
University of Nottingham
, Nottingham, UK.http://eprints.nottingham.ac.uk/30682/
7.
Pringuey
,
T.
,
2012
, “
Large Eddy Simulation of Primary Liquid-Sheet Breakup
,”
Ph.D. thesis
,
University of Cambridge
, Cambridge, UK.10.17863/CAM.14041
8.
Dick
,
J.
,
Kumar
,
V.
,
Pravin
,
N.
, and
Montanari
,
F.
,
2019
, “
Simulation of an Aero-Engine Bearing Compartment Using Two-Way Transition Between Lagrangian Droplets and a Three-Dimensional Eulerian Liquid Film
,”
ASME
Paper No. GT2019-90146.10.1115/GT2019-90146
9.
Farrall
,
M.
,
Simmons
,
K.
,
Hibberd
,
S.
, and Gorse, P.,
2004
, “
A Numerical Model for Oil Film Flow in an Aero-Engine Bearing Chamber and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
, 128(1), pp. 111–117.10.1115/1.1924719
10.
Wang
,
C.
,
Morvan
,
H. P.
,
Hibberd
,
S.
, and
Cliffe
,
K. A.
,
2011
, “
Thin Film Modelling for Aero-Engine Bearing Chambers
,”
ASME
Paper No. GT2011-46259.10.1115/GT2011-46259
11.
Kakimpa
,
B.
,
Morvan
,
H.
, and
Hibberd
,
S.
,
2016
, “
The Depth-Averaged Numerical Simulation of Laminar Thin-Film Flows With Capillary Waves
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p. 112501.10.1115/1.4033471
12.
Farrall
,
M.
,
Hibberd
,
S.
, and
Simmons
,
K.
,
2008
, “
The Effect of Initial Injection Conditions on the Oil Droplet Motion in a Simplified Bearing Chamber
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012501
.10.1115/1.2770480
13.
Chen
,
B.
,
Chen
,
G. D.
,
Sun
,
H. C.
, and
Zhang
,
Y. H.
,
2014
, “
Effect of Oil Droplet Deformation on Its Deposited Characteristics in an Aeroengine Bearing Chamber
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
, 228, pp.
206
218
.10.1177/0954410012467875
14.
Sun
,
H.
,
Chen
,
G.
,
Zhang
,
Y.
, and
Wang
,
L.
,
2016
, “
Theoretical and Experimental Studies on the Motion and Thermal States of Oil Droplet in a Bearing Chamber
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
, 230, pp.
2596
2614
.10.1177/0954410016629690
15.
Jingyu
,
Z.
,
Liu
,
Z. X.
,
Hu
,
J. P.
, and
Lu
,
Y.
,
2015
, “
Numerical Modelling of Unsteady Oil Film Motion Characteristics in Bearing Chambers
,”
Int. J. Turbo Jet Engines
,
32
(
3
), pp.
233
245
.10.1515/tjj-2014-0029
16.
Gorse
,
P.
,
Busam
,
S.
, and
Dullenkopf
,
K.
,
2006
, “
Influence of Operating Condition and Geometry on the Oil Film Thickness in Aeroengine Bearing Chambers
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
103
110
.10.1115/1.1924485
17.
Jingyu
,
Z.
, and
Zhenxia
,
L.
,
2015
, “
Numerical and Experimental Study for Unsteady Oil Film Thickness of the Rotating Cylinder Chamber Wall
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122501
.10.1115/1.4030524
18.
Nicoli
,
A.
,
Jefferson-Loveday
,
R.
, and
Simmons
,
K.
,
2019
, “
A New OpenFOAM Solver Capable of Modelling Oil Jet-Breakup and Subsequent Film Formation for Bearing Chamber Applications
,”
ASME
Paper No. GT2019-90264.10.1115/GT2019-90264
19.
Adeniyi
,
A. A.
,
Morvan
,
H. P.
, and
Simmons
,
K. A.
,
2015
, “
A Multiphase Computational Study of Oil-Air Flow Within the Bearing Sector of Aeroengines
,”
ASME
Paper No. GT2015-43496.10.1115/GT2015-43496
20.
Gorse
,
P.
,
Willenborg
,
K.
,
Busam
,
S.
,
Ebner
,
J.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2003
, “
3D-LDA Measurements in an Aero-Engine Bearing Chamber
,”
ASME
Paper No. GT2003-38376.10.1115/GT2003-38376
21.
Bristot
,
A.
,
Simmons
,
K.
, and
Klingsporn
,
M.
,
2017
, “
Effect of Turbulence Damping in VOF Simulation of an Aero-Engine Bearing Chamber
,”
ASME
Paper No. GT2017-63436.10.1115/GT2017-63436
22.
Singh, K., Sharabi
,
M.
,
Ambrose
,
S.
,
Eastwick
,
C.
, and
Jefferson-Loveday
,
R.
,
2019
, “
Prediction of Film Thickness of an Aero-Engine Bearing Chamber Using Coupled VOF and Thin Film Model
,”
ASME
Paper No. GT2019-91314.10.1115/GT2019-91314
23.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Paper No. 930072.10.4271/930072
24.
Bai
,
C.
, and
Gosman
,
A. D.
,
1996
, “
Mathematical Modelling of Wall Films Formed by Impinging Sprays
,”
SAE Trans
,
105
, pp.
782
796
.https://www.jstor.org/stable/44736317
25.
Mayer
,
S.
,
1961
, “
Theory of Liquid Atomization in High Velocity Gas Streams
,”
Am. Rocket Soc. J.
,
31
(
12
), pp.
1783
1784
.
26.
Friedrich
,
M. A.
,
Lan
,
H.
,
Wegener
,
J. L.
,
Drallmeier
,
J. A.
, and
Armaly
,
B. F.
,
2008
, “
A Separation Criterion With Experimental Validation for Shear-Driven Films in Separated Flows
,”
ASME J. Fluids Eng.
, 130(5), p.
051301
.10.1115/1.2907405
You do not currently have access to this content.